华师版市级名校2022年中考数学全真模拟试题含解析_第1页
华师版市级名校2022年中考数学全真模拟试题含解析_第2页
华师版市级名校2022年中考数学全真模拟试题含解析_第3页
华师版市级名校2022年中考数学全真模拟试题含解析_第4页
华师版市级名校2022年中考数学全真模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,ACAB,且AC=AB,则点C的坐标

2、为()A(2,1)B(1,2)C(1,3)D(3,1)2如图,四边形ABCD中,ADBC,B=90,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD23如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OAEOPA;当正方形的边长为3,BP1时,cosDFO=,其中正确结论的个数是( )A0B1C2D34如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为(

3、 )AB3cmCD9cm5河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A12米B4米C5米D6米6如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形7某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了

4、解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A平均数B中位数C众数D方差8如图,在中,则等于( )ABCD9若代数式有意义,则实数x的取值范围是()Ax0Bx0Cx0D任意实数10关于的叙述正确的是()A=B在数轴上不存在表示的点C=D与最接近的整数是311一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD12下列立体图形中,主视图是三角形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13我国古代易经一书中记载,远古时期,

5、人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个14有一组数据:3,5,5,6,7,这组数据的众数为_15抛物线y=(x2)23的顶点坐标是_16从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在ABC中,DB1,BC2,CD是ABC的完美分割线,且ACD是以CD为底边的等腰三角形,则CD的长为_17小明掷一枚

6、均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 18当x=_时,分式 值为零三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图:求作一点P,使,并且使点P到的两边的距离相等20(6分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动

7、的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度21(6分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系22(8分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底

8、角顶点连接起来则形成一组旋转全等的三角形小胖把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小胖发现若BACDAE,ABAC,ADAE,则BDCE(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,ABBC,ABCBDC60,求证:AD+CDBD;(3)如图3,在ABC中,ABAC,BACm,点E为ABC外一点,点D为BC中点,EBCACF,EDFD,求EAF的度数(用含有m的式子表示)23(8分)在中,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF求证:

9、;求证:四边形BDFG为菱形;若,求四边形BDFG的周长24(10分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由25(10分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得

10、利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?26(12分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N(1)求证:ABEBCN;(2)若N为AB的中点,求tanABE27(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点

11、M,N,反比例函数的图象经过点M,N求反比例函数的解析式;若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】过点C作CDx轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明ABOCAD,得到ADOB2,CDAO1,则C点坐标可求.【详解】如图,过点C作CDx轴与D.函数y=2x+2的图象分别与x轴,y轴交于A,B两点,当x0时,y2,则B(0,2);当y0时,x1,则A(1,0).ACAB,ACAB,BAOCAD90

12、,ABOCAD.在ABO和CAD中,AOBCDAABOCADABCA,ABOCAD,ADOB2,CDOA1,ODOAAD123,C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.2、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED

13、,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理3、C【解析】由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到P=Q,根据余角的性质得到AQDP;故正确;根据勾股定理求出

14、直接用余弦可求出【详解】详解:四边形ABCD是正方形,AD=BC, BP=CQ,AP=BQ,在DAP与ABQ中, DAPABQ, P=Q, AQDP;故正确;无法证明,故错误BP=1,AB=3, 故正确,故选C【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高4、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值5、A【解析】试题分析:在RtABC中,BC=6米,AC=BC=6(米).(米).故选A.【详解】请在此输入详解!6、D【解析】

15、(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D7、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众

16、数详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数故选:C点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用8、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义9、C【解析】根据分式和二次根式有意义的条件进行解答【详解】 解:依题意得:x21且x1解得x1故选C【点睛

17、】考查了分式有意义的条件和二次根式有意义的条件解题时,注意分母不等于零且被开方数是非负数10、D【解析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D,与最接近的整数是=1故选D【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.11、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图

18、为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 12、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分

19、析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数64+千位上的数63+百位上的数62+十位上的数6+个位上的数,即164+263+362+06+2=1详解:2+06+366+2666+16666=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力14、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多

20、的数据叫做众数是解题的关键15、(2,3)【解析】根据:对于抛物线y=a(xh)2+k的顶点坐标是(h,k).【详解】抛物线y=(x2)23的顶点坐标是(2,3).故答案为(2,3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.16、【解析】设AB=x,利用BCDBAC,得=,列出方程即可解决问题【详解】BCDBAC,=,设AB=x,22=x,x0,x=4,AC=AD=4-1=3,BCDBAC,=,CD=故答案为【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用BCDBAC解答17、【解析】根据题意可知,掷一次骰子有6个可能结果,

21、而点数为奇数的结果有3个,所以点数为奇数的概率为考点:概率公式18、1【解析】试题解析:分式的值为0,则: 解得: 故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析【解析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可【详解】如图所示:P点即为所求【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键20、(1)证明见解析(2)线段EC,CF与BC的数量关系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,

22、从而可以得到EC、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:四边形ABCD是菱形,BAD120,BAC60,BACF60,AB=BC,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点

23、A作AEEG,AFGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:CFCF,CECFCECF(CECF)BC,即CECFBC; (3)连接BD与AC交于点H,如图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形21、(1)证明见解析(2)

24、 (3)EP+EQ= EC【解析】(1)由题意可得:ACP=BCQ,即可证ACPBCQ,可得 AP=CQ;作 CHPQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求AH= ,即可求 AP 的长;作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 O,由题意可证CNP CMQ,可得 CN=CM,QM=PN,即可证 RtCEMRtCEN,EN=EM,CEM=CEN=45,则可求得 EP、EQ、EC 之间的数量关系【详解】解:(1)如图 1 中,ACB=PCQ=90,ACP=BCQ 且 AC=BC,CP=CQACPBCQ(SAS)PA=BQ如图 2 中,作 CHPQ 于

25、 HA、P、Q 共线,PC=2,PQ=2,PC=CQ,CHPQCH=PH= 在 RtACH 中,AH= PA=AHPH= -解:结论:EP+EQ= EC理由:如图 3 中,作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 OACPBCQ,CAO=OBE,AOC=BOE,OEB=ACO=90,M=CNE=MEN=90,MCN=PCQ=90,PCN=QCM,PC=CQ,CNP=M=90,CNPCMQ(AAS),CN=CM,QM=PN,CE=CE,RtCEMRtCEN(HL),EN=EM,CEM=CEN=45EP+EQ=EN+PN+EMMQ=2EN,EC=EN,EP+EQ=EC【点睛】

26、本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形22、(1)证明见解析;(2)证明见解析;(3)EAF =m.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明DABEAC即可;(2)如图2中,延长DC到E,使得DB=DE首先证明BDE是等边三角形,再证明ABDCBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM想办法证明AFEAFG,可得EAF=FAG=m.详(1)证明:如图1中,BAC=DAE,DAB=EAC,在DAB和EAC中,DAB

27、EAC,BD=EC(2)证明:如图2中,延长DC到E,使得DB=DEDB=DE,BDC=60,BDE是等边三角形,BD=BE,DBE=ABC=60,ABD=CBE,AB=BC,ABDCBE,AD=EC,BD=DE=DC+CE=DC+ADAD+CD=BD(3)如图3中,将AE绕点E逆时针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM由(1)可知EABGAC,1=2,BE=CG,BD=DC,BDE=CDM,DE=DM,EDBMDC,EM=CM=CG,EBC=MCD,EBC=ACF,MCD=ACF,FCM=ACB=ABC,1=3=2,FCG=ACB=MCF,

28、CF=CF,CG=CM,CFGCFM,FG=FM,ED=DM,DFEM,FE=FM=FG,AE=AG,AF=AF,AFEAFG,EAF=FAG=m点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题23、(1)证明见解析(2)证明见解析(3)1【解析】利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF和A

29、C之间的关系,解出x即可【详解】证明:,又为AC的中点,又,证明:,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,在中,解得:,舍去,菱形BDFG的周长为1【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键24、(1);(2)详见解析;(3)为定值,=【解析】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),由AOEOBF,可得到,然后表示出直线AB的解析式即可得到结论;(3)作P

30、QAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 由PQON,可得ON=amt+at2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),解之得 ,;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),OAOB,AOE=OBF,AOEOBF,直线AB过点A(m,am2)、点B(n,an2),过点(0,);(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 PQON,ON=at(m+t)= amt+at2,同理:OM= amt+at2,所以,OM+ON= 2at2=2c=OC,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论