




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )ABCD2下列计算正确的
2、是()A(a)aBa+aaC(3a)(2a)6aD3aa33从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD4下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B菱形C平行四边形D正五边形5下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=066的绝对值是( )A6B6CD7下列生态环保标志中,是中心对称图形的是()A B C D8如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD93的绝对值是()A3B3C-D10如图所示的几何体的左视图是( )ABCD11某校
3、体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A方差 B极差 C中位数 D平均数12某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A4个B5个C6个D7个二、填空题:(本大题共6个小题,每小题4分,共24分)13函数y= 中,自变量x的取值范围是 _14关于x的一元二次方程x2+4xk=0有实数根,则k的取值范围是_15若m22m1=0,则代数式2m24m+3的值为 16如图,在梯形ACDB中,ABCD,C+D=90,AB=
4、2,CD=8,E,F分别是AB,CD的中点,则EF=_17如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为_.18如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时
5、,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?20(6分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:节目代号ABCDE节目类型新闻体育动画娱乐戏曲喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m的值为 扇形统计图中n的值为 ;(2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查
6、结果,估计该校最喜爱新闻节目的学生人数.21(6分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转度(0180)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围22(8分)如图,在大楼AB正前方有一斜坡CD,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为4
7、5,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.23(8分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子
8、表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由24(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P在地面A处测得点M的仰角为58、点N的仰角为45,在B处测得点M的仰角为31,AB5米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长(参考数据:sin580.85,cos580.53,tan581.1,sin310.52,cos310.86,tan310.1)25(10
9、分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率26(12分)如图
10、1,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan,即ctan角的邻边角的对边ACBC,根据上述角的余切定义,解下列问题:(1)如图1,若BC3,AB5,则ctanB_;(2)ctan60_;(3)如图2,已知:ABC中,B是锐角,ctan C2,AB10,BC20,试求B的余弦cosB的值27(12分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
11、收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性
12、)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱故选A考点:由三视图判断几何体2、A【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解【详解】A(a2)3=a
13、23=a6,故本选项正确;Ba2+a2=2a2,故本选项错误;C(3a)(2a)2=(3a)(4a2)=12a1+2=12a3,故本选项错误;D3aa=2a,故本选项错误故选A【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键3、C【解析】根据正方形的判定定理即可得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.4、B【解析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面
14、内一个图形绕某个点旋转180,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误故选:B【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.5、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.6、
15、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值7、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形8、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30,在AFD与DCE中C=AFD=90,ADF=DEC,AF=DC,,AFDDCE(
16、AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB9、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.10、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A11、C【解析】1
17、3个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了故选C12、B【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键【详解】请在此输入详解!【点睛】请在此输入点睛!二、填空题:(本大题共6个小题,每小题4分,共24分)13、x【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解得
18、x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了函数自变量取值范围的求法要使得本题函数式子有意义,必须满足分母不等于114、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有实数根,=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键15、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m
19、+3=2(m22m)+3=21+3=1故答案为1考点:代数式求值16、3【解析】延长AC和BD,交于M点,M、E、F三点共线,EF=MFME.【详解】延长AC和BD,交于M点,M、E、F三点共线,C+D=90,MCD是直角三角形,MF=,同理ME=,EF=MFME=4-1=3.【点睛】本题考查了直角三角形斜边中线的性质.17、1-1【解析】将ABD绕点A逆时针旋转120得到ACF,取CF的中点G,连接EF、EG,由AB=AC=2、BAC=120,可得出ACB=B=10,根据旋转的性质可得出ECG=60,结合CF=BD=2CE可得出CEG为等边三角形,进而得出CEF为直角三角形,通过解直角三角形
20、求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解【详解】将ABD绕点A逆时针旋转120得到ACF,取CF的中点G,连接EF、EG,如图所示AB=AC=2,BAC=120,ACB=B=ACF=10,ECG=60CF=BD=2CE,CG=CE,CEG为等边三角形,EG=CG=FG,EFG=FEG=CGE=10,CEF为直角三角形BAC=120,DAE=60,BAD+CAE=60,FAE=FAC+CAE=BAD+CAE=60在ADE和AFE中,ADEAFE(S
21、AS),DE=FE设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中,CEF=90,CF=2x,EC=x,EF=x,6-1x=x,x=1-,DE=x=1-1故答案为:1-1【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键18、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上
22、且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=B
23、AC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.20、(1)150;45,36, (2)娱乐 (3)1【解析】(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;(2)根据众数的定义求解可得;(3)用总人数乘以样本中喜爱新闻节目的人数所占比例【详解】解:(1)被调查的学生总数为3020%150(人),m150(1230549)45,n%100%36%,即n36,故答案为150,
24、45,36;(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,被调查学生中,最喜爱电视节目的“众数”为娱乐,故答案为娱乐;(3)估计该校最喜爱新闻节目的学生人数为20001【点睛】本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型21、(2)AM=;(2)=;(3)4-d4或d=4+【解析】(2)连接BM,则BMA=90,在RtABC中,利用勾股定理可求出AC的长度,由B=BMA=90、BCA=MAB可得出ABCAMB,根据相似三角形的性质可求出AM的长度; (2)连接OP、ON,过点O作OGAD于点G,则四边形DGON为矩形,进而可得出
25、DG、AG的长度,在RtAGO中,由AO=2、AG=2可得出OAG=60,进而可得出AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长; (3)由(2)可知:AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B在直线CD上的图形,在RtABD中(点B在点D左边),利用勾股定理可求出BD的长度进而可得出CB的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围【详解】(2)在图2中,连接BM,则BMA=90在RtABC中,AB=4,BC=3,AC=2B=BMA=90,BCA=MAB,ABCAMB,=,即=,AM=;(2)在图3中,连接
26、OP、ON,过点O作OGAD于点G,半圆与直线CD相切,ONDN,四边形DGON为矩形,DG=ON=2,AG=AD-DG=2在RtAGO中,AGO=90,AO=2,AG=2,AOG=30,OAG=60又OA=OP,AOP为等边三角形,=(3)由(2)可知:AOP为等边三角形,DN=GO=OA=,CN=CD+DN=4+当点B在直线CD上时,如图4所示,在RtABD中(点B在点D左边),AB=4,AD=3,BD=,CB=4-AB为直径,ADB=90,当点B在点D右边时,半圆交直线CD于点D、B当半圆弧与直线CD只有一个交点时,4-d4或d=4+【点睛】本题考查了相似三角形的判定与性质、矩形的性质、
27、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出OAG=60;(3)依照题意画出图形,利用数形结合求出d的取值范围22、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90,BCA=60,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)
28、过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键23、(3)(4,6);(3)-3;4;(2)F的坐标为(3,0)或(3,)【解析】(3)先将A(3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y
29、的值即可;(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GFx轴,故可得F的纵坐标, 再将y=2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据FDP与FDG的面积比为3:3,故PD:DG=3:3已知FPHD,则FH:HG=3:3再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详
30、解】解:(3)将A(3,0),B(4,0),代入y=ax3+bx+2得:,解得:,抛物线的表达式为y=x3+x+2,把E(4,y)代入得:y=6,点E的坐标为(4,6)(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入得:,解得:,直线BD的表达式为y=x2把x=0代入y=x2得:y=2,D(0,2)当点G与点D重合时,G的坐标为(0,2)GFx轴,F的纵坐标为2将y=2代入抛物线的解析式得:x3+x+2=2,解得:x=+3或x=+34x4,点F的坐标为(+3,2)m=FG=3设点F的坐标为(x,x3+x+2),则点G的坐标为(x+m,(x+m)2),x3+x+2=(x+
31、m)2,化简得,m=x3+4,0,m有最大值,当x=0时,m的最大值为4(2)当点F在x轴的左侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x,x2),x3+x+2=x2,整理得:x36x36=0,解得:x=3或x=4(舍去),点F的坐标为(3,0)当点F在x轴的右侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x, x2),x3+x+2=x2,整理得:x3+3x36=0,解得:x=3或x=3(舍去),点F的坐标为(3,)综上所述,点F的坐标为(3,0)或(3,)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.24、1.8米【解析】设PA=PN=x,RtAPM中求得=1.6x, 在RtBPM中,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在RtAPN中,NAP=45,PA=PN,在RtAPM中,,设PA=PN=x,MAP=58,=1.6x,在RtBPM中,,MBP=31,AB=5, x=3,MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.25、(1)41
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保工程招标文件编制及评审培训
- 2025年中药配方颗粒质量标准提升与市场拓展策略分析
- 黔南民族医学高等专科学校《药理学实验B》2023-2024学年第一学期期末试卷
- 辽宁装备制造职业技术学院《大学外语》2023-2024学年第一学期期末试卷
- 贵州经贸职业技术学院《心理学》2023-2024学年第一学期期末试卷
- 抚州幼儿师范高等专科学校《武术I》2023-2024学年第一学期期末试卷
- 唐山海运职业学院《园林植物栽培学》2023-2024学年第一学期期末试卷
- 2025年制造业供应链数字化协同与产业互联网融合研究报告
- 物联网安全事件响应策略与智能修复系统-洞察及研究
- 小公司周年策划方案
- 2025年广东省高考政治试卷真题(含答案解析)
- Unit 2 Home Sweet Home 第2课时(Section A Pronunciation 2a-2e) 2025-2026学年人教版英语八年级下册
- 事故隐患内部报告奖励制度模板三
- 2025年中国继电保护装置行业市场调查、投资前景及策略咨询报告
- 2025至2030年中国液压元件行业市场竞争态势及发展趋向研判报告
- 碧桂园案场管理制度
- 房地产营销绩效评估与分析
- 2025年报关操作技巧与核心要点
- 儿童周末兴趣活动方案
- 2024-2025学年人教版八年级数学下册期末综合复习解答压轴题培优提升专题训练+
- 2025-2030中国蒸气产品行业市场发展趋势与前景展望战略研究报告
评论
0/150
提交评论