纳米磁性材料的制备方法_第1页
纳米磁性材料的制备方法_第2页
纳米磁性材料的制备方法_第3页
纳米磁性材料的制备方法_第4页
纳米磁性材料的制备方法_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、纳米磁性材料可以表现在多个层次上,即零维的磁性纳米粒子;一维的磁性纳米丝;二维的磁性纳米膜;块状的磁性纳米粒子复合物。纳米材料的制备方法可分为两大类:1. 由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。 2. 由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物等。 这里是另一种分类法,实际工作中会有更多创造变化。这里是另一种分类法,实际工作中会有更多创造变化。下面介绍一些具体实例 用高能球磨,超声波或气流粉碎等机械方法,可以将微粉制备成纳米粒子。对难熔金属或不能进行化学反应的材料,机械法较实用。缺点是粒度分级难,表面污染重。 用高能

2、球橦击金属材料表面,可使表面纳米化,提高抗磨损,抗腐蚀能力,而且表面与体材料为同一材料,没有表层剥落问题。 此法机理主要是产生大量缺陷,位错,发展成交错的位错墙,将大晶粒切割成纳米晶。PP21st contactP1PP22nd contactP1VacuumvSampleVibrationgeneratorsampleLocalized severe plastic deformationRepeated Multi-directional Loading每一次撞击产生一组位错Treated surface50 m从表面到内部,位错密度逐步减少2 nmb=1/3111cbcbb由上到下,刻蚀

3、法。由上到下,刻蚀法。将大面积的薄膜用化学,电子束,离子束刻蚀,甚至在扫描隧道显微镜等设备下用原子搬运的方法制备纳米点,纳米线或其他纳米图形。 如在制备过程中不产生化学反应,就称物理法物理法。常用的有雾化法,溅射法,蒸发法,非晶晶化法等。 如在制备过程中产生化学反应的就称为化学法化学法,常用的有金属有机化学气相沉积法(MOCVD),溶胶-凝胶法(sol-gel),水热法,共沉淀法等。在充有惰性气体的真空室,将金属加热蒸发成原子雾与惰性气体碰撞失去动能,在液氮冷却的棒上沉淀,将此粉末刮下收集。 雾化法指真空中金属熔体流束在四周环形超声气流等的冲击下分散成雾化的,微小的液滴,再在冷却的底板或收集器

4、上凝固成纳米粒子。这是规模生产金属纳米粒子的有效方法。超声喷嘴的设计是重要的。 蒸发法指在低压的惰性气体中加热金属,形成金属蒸汽。再将金属蒸汽凝固在冷冻的底板上形成纳米粒子,或在其他单晶,多晶底板上形成纳米薄膜。按加热金属的方法可分为: 电子束加热(如分子束外延MBE),激光束加热PLD,电阻丝或电阻片加热等。MBE/SPM/MOKE/Mssbauer SpectrometerVT-SPMLED/AESMssbauer SpectrometerMOKEMBE/EBERHEED在在Si(111)7X7基底上用基底上用MBE生长的生长的0.21ML的的Mn纳米点纳米点, 可见到可见到Mn纳米纳米点

5、自组装于有点自组装于有层错的位置层错的位置。(30 x30nm2) 溅射法是目前制备纳米薄膜使用最普遍的方法之一。是在充氩的真空室中,以所需金属靶材为阴极,薄膜底板为阳极,两极间辉光放电形成的氩离子在电场作用下冲击阴极靶材,将其溅射到底板上形成薄膜。 在第二章已有详细介绍,在此不多重复。块状纳米晶软磁制备的非晶晶化法块状纳米晶软磁制备的非晶晶化法 前提是先有非晶态薄带或薄膜,再控制退火条件,使其晶化成纳米尺度的纳米晶。如对非晶态软磁合金FeSiB中加入Nb,Cu,控制了晶化过程中的成核和晶粒长大,是易于大量生产纳米软磁的重要方法。 非晶态制备,是将熔态金属以每秒一百万度的速度快速降温,阻止其晶

6、化而获得。 溶胶凝胶法是20世纪60年代发展起来的制备玻璃陶瓷的新工艺。现常用于制备纳米粒子。基本原理是将金属醇盐或无机盐在一定溶剂和条件下控制水解,不产生沉淀而形成溶胶。然后将溶质缩聚凝胶化,内部形成三位网络结构,再将凝胶干燥焙烧,去除有机成分,最后得到所需的纳米粉末材料,如将溶胶附著在底板上,则可得纳米薄膜。 金属醇盐是金属与乙醇反应生成的M-O-C键的有机金属化合物M(OR)n,M是金属,R是烷基或丙烯基。易水解。有机法(异丙醇铝)制备Ni65Fe31Co4/Al2O3纳米复合颗粒材料异丙醇铝去离子水加硝酸至 PH=1.2(85oC)搅拌10分钟按Ni65Fe31Co4配制保持酸性 30

7、分钟后开始凝胶转变50小时成干凝胶干胶粉在60ml/min氢气下热处理得Ni65Fe31Co4/Al2O3纳米复合颗粒材料用溶胶凝胶法制备用溶胶凝胶法制备ZrO一维纳米线列阵:一维纳米线列阵: 10克氧氯化锆+50ml乙醇搅拌,加入6mol/l的HCl调至PH=2.搅拌10小时再陈化24小时得溶胶。浸入一维纳米线的制备模扳后取出,干燥1小时,再在500度恒温4小时,即可得ZrO一维纳米线列阵。用溶胶凝胶法制备用溶胶凝胶法制备Zn铁氧体与铁氧体与-Fe2O3隧穿颗粒膜:隧穿颗粒膜: 以柠檬酸为络合物,去离子水为溶剂,ZnO 和Fe(NO3)3.9H2O为原料,配置成溶胶后在70度恒温形成凝胶和干

8、凝胶,1100度预烧4小时,粉碎并在1000kg/cm2下压片,再1400度热处理2.5小时可得以-Fe2O3为隧穿势垒的半金属Zn铁氧体的隧穿颗粒膜化学共沉淀法化学共沉淀法 通过化学反应将溶液中的金属离子共同沉淀下来。先将金属盐类按比例配好,在溶液中均匀混合,再用强碱作沉淀剂,将多种金属离子共同沉淀下来。 图示Fe3O4纳米粒子的共沉淀制备:将二价铁离子和三价铁离子的氯化物溶液在氢氧化钠强碱的作用下沉淀。50年前就用此法制备的纳米磁性粒子观察磁畴年前就用此法制备的纳米磁性粒子观察磁畴 将金属有机物汽化后混合引入真空反应室,在热的作用下诱发气相反应,有机物分解,形成金属纳米粒子或薄膜,如有氧气

9、氛存在,则可形成金属氧化物。常用的金属有机物是 M-(tmhd)2,3 M-(thd) 等。(有机部分 -(thd) 是四甲基-庚烷酮) 磁性液体制备充分利用了纳米粒子的表面效应,即表面成分的变异和吸附。将长链,如脂肪酸的亲水性羧基 COOH 吸附在磁性纳米粒子表面,而亲油性的烃基 CnH2n+1与磁性液体的基液如聚苯醚连接,起到界面活性剂的作用。典型的界面活性剂有油酸,酰亚胺,聚胺等。将磁性纳米粒子制备成将磁性纳米粒子制备成磁性液体的方法磁性液体的方法磁性液体在磁场梯度中集聚磁性液体在磁场梯度中集聚纳米磁性粒子通过表面活化剂与单克隆抗体,酶,药物,基因结合,称为磁性微球磁性微球, 一维磁性纳

10、米丝一维磁性纳米丝 这是近年来发展很快的研究内容,制备纳米丝列阵的方法一般先要制备圆柱形列阵孔的模板,在这些模板孔中可以用物理制膜(溅射,蒸发等),化学制膜(MOCVD法, 溶胶凝胶法,共沉淀法等)获得相当均匀的各类材料,如单晶,多晶,多层膜等一维纳米丝列阵。而制备模板的方法也有多种,如径迹蚀刻高聚物模板,分子筛胶束型模板,碳纳米管模板等,但以阳极氧化铝模板法为最普遍。 下面介绍模板制备方法NiFe丝Co单晶丝 核裂变碎片辐照使高分子聚酯或聚碳酸酯薄膜产生损伤性凹坑,再经化学处理而形成分布随机,孔径均匀的圆柱形纳米模板。这类模板的最小孔径为10纳米。由于核辐照有发散性,并不能保证孔与模板面的垂

11、直。 前面曾提到表面活性剂高聚物,一端亲水,一端亲油。当加到有无机前驱物的溶液中时,亲油端会因水的排斥而浮到水面,表面活性剂浓度增加到使水面上的亲油端饱和后,亲油端只能在溶液内聚集成胶束,胶束内为亲油端,胶束外为亲水端,以降低能量。胶束可形成球状,柱状,层状的周期性排列。胶束之间为有无机前驱物的溶液所包围。对此进行干燥以去除溶液水,再加热烧去有机物,则形成由无机壁构成的介孔分子筛。也可以当成模板。碳纳米管模板法碳纳米管模板法以碳纳米管本身作为碳源而参与反应,形成原碳纳米管为基本形状的一维实心纳米线。这种方法尚没有用于磁性材料纳米线制备。二次阳极氧化法制备二次阳极氧化法制备Al2O3模板模板将厚

12、度为0.5mm以下的高纯铝片作500度真空退火2小时并作电化学抛光处理。以此作电极在H2SO4或H2C2O4电解液中作恒温恒压阳极氧化十余小时,再在6wt%H2PO4和1.8wt%H2CrO4混合液中将形成的氧化膜层完全溶解。对此铝片用同样的条件作二次阳极氧化2-4小时,可得如图所示的模板。进一步制备双通模板进一步制备双通模板将上述模板在20%HCl和0.1MCuCl2混合液中去除剩余的铝,再用5wt%H2PO4去除底部密实的氧化铝障碍层,则可得如图所示的双通模板。 氧化初期形成致密氧化层-障碍层,一定条件下其厚度不变。其后的阳极氧化是靠电场作用下的离子扩散。由于氧化铝的体积大于铝的体积,较厚的氧化层内体积膨胀产生较大的应力。在电场,应力和酸性介质的共同作用下,氧化膜的薄弱点发生选择性溶解破坏,形成多孔结构,应力的均匀作用使孔按六角密排自组装时能量最低。目前的进展显然还难以真正应用于产业化讲义中引用了卢柯研究员,李发伸教讲义中引用了卢柯研究员,李发伸教授,张立德教授,翟宏如教授,成昭授,张立德教授,翟宏如教授,成昭华研究员,韩秀峰研究员,阎明朗博华研究员,韩秀峰研究员,阎明朗博士,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论