《电力电子技术》实验指导书(new)_第1页
《电力电子技术》实验指导书(new)_第2页
《电力电子技术》实验指导书(new)_第3页
《电力电子技术》实验指导书(new)_第4页
《电力电子技术》实验指导书(new)_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电力电子技术实 验 指 导 书兰州工业高等专科学校电气工程系实验中心目 录实验安全操作规程 实验一 单结晶体管触发电路实验 1实验二 正弦波同步移相触发电路实验 3实验三 锯齿波同步移相触发电路实验 5实验四 西门子TCA785集成触发电路实验 7实验五 单相半波可控整流电路实验 11实验六 单相桥式半控整流电路实验 14实验七 单相桥式全控整流及有源逆变电路实验 17实验八 三相半波可控整流电路实验 20实验九 三相半波有源逆变电路实验 23实验十 三相桥式半控整流电路实验 26实验十一 三相桥式全控整流及有源逆变电路实验 29实验十二 单相交流调压电路实验(1) 33实验十三 单相交流调压

2、电路实验(2) 36实验十四 单相交流调功电路实验 39实验十五 三相交流调压电路实验 42实验十六 直流斩波电路原理实验 45实验十七 单相正弦波脉宽调制(SPWM)逆变电路实验 48实验十八 全桥DC-DC变换电路实验 53实验十九 直流斩波电路的性能研究(六种典型线路) 55实验二十 单相斩控式交流调压电路实验 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行

3、。(3)为了提高实验过程中的效率,学生独立完成接线或改接线路后,应仔细再次核对线路,并使组内其他同学引起注意后方可接通电源。(4)如果在实验过程中发生过流告警,应仔细检查线路以及电位器的调节参数,确定无误后方能重新进行实验。(5)在实验中应注意所接仪表的最大量程,选择合适的负载完成实验,以免损坏仪表、电源或负载。(6)电源控制屏以及各挂件所用保险丝规格和型号是经我们反复实验选定的,不得私自改变其规格和型号,否则可能会引起不可预料的后果。(7)在完成电流、转速闭环实验前一定要确保反馈极性是否正确,应构成负反馈,避免出现正反馈,造成过流。(8)除作阶跃起动试验外,系统起动前负载电阻必须放在最大阻值

4、,给定电位器必须退回至零位后,才允许合闸起动并慢慢增加给定,以免元件和设备过载损坏。(9)在直流电机启动时,要先开励磁电源,后加电枢电压。在完成实验时,要先关电枢电压,再关励磁电源。I实验一 单结晶体管触发电路实验一、实验目的1. 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。2. 掌握单结晶体管触发电路的调试步骤和方法。二、实验材料及工具序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK03-1 晶闸管触发电路该挂件包含“单结晶体管触发电路”等模块。3双踪示波器自备三、实验内容1. 单结晶体管触发电路的调试。2. 单结晶体管触发电路各点电压波形的

5、观察。四、实训方法1. 单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂

6、件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°170°范围内移相。2. 单结晶体管触发电路各点波形的记录当30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与各波形进行比较。五、实验报告画出=60°时,单结晶体管触发电路各点输出的波形及其幅值。六、注意事项双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳

7、相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。七、思考题1.单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系。 2.单结晶体管触发电路的移相范围能否达到180°。实验二 正弦波同步移相触发电路实验一、实验目的1.熟悉正弦波同步移相触发电路的

8、工作原理和各元件的作用。2.掌握正弦波同步移相触发电路的调试步骤和方法。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK03-1 晶闸管触发电路该挂件包含“正弦波同步移相触发电路”等模块。3双踪示波器自备三、实验内容1.正弦波同步移相触发电路的调试。2.正弦波同步移相触发电路中各点波形的观察。四、实验方法1.将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超

9、出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察正弦波触发电路各观察点的电压波形。2.确定脉冲的初始相位当Uct=0时(将RP1电位器逆时针旋到底),调节Ub(调RP2),使U4波形与图2-1中的TP4波形相同,使得触发脉冲的后沿接近90°。3.保持RP2电位器不变,顺时

10、针旋转RP1(即逐渐增大Uct),用示波器观察同步电压信号及输出脉冲“5”点的波形,注意Uct增加时脉冲的移动情况,并估计移相范围。4.调节Uct(调RP1),使=60°,观察并记录面板上观察点“1”“5”及输出脉冲“G1”、“K1”的电压波形及其幅值。调节RP3,观测“5”点脉冲宽度的变化。五、实验报告1.画出=60°时,观察点“1”“5”及输出脉冲电压的波形。2.指出Uct增加时,应如何变化,移相范围大约等于多少度,指出同步电压的哪一段为脉冲移相范围。3.分析RP3对输出脉冲宽度的影响。图2-1 初始脉冲相位的确定(接近90°)六、注意事项1.参见本教材实验一

11、的注意事项。2.由于正弦波触发电路的特殊性,我们设计移相电路的调节范围较小,如需将调节到逆变区,除了调节RP1外,还需调节RP2电位器。3.由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。七、思考题1. 正弦波同步移相触发电路由哪些主要环节组成。 2. 正弦波同步移相触发电路的移相范围能否达到180。实验三 锯齿波同步移相触发电路实验一、实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2掌握

12、锯齿波同步移相触发电路的调试方法。二、实验所需挂件及附件序号型号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步移相触发电路”等模块。3双踪示波器自备三、实验内容1.锯齿波同步移相触发电路的调试。2.锯齿波同步移相触发电路各点波形的观察和分析。四、实验方法1.将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少

13、,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。调节电位器RP1,观测“2”点锯齿波斜率的变化。观察“3”“6”点电压波形和输出电压的波形,

14、记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。2.调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使=170°,其波形如图3-1所示。图3-1锯齿波同步移相触发电路3.调节Uct(即电位器RP2)使=60°,观察并记录U1U6及输出 “G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。U1U2U3U4U5U6幅值(V)宽度(ms)五、

15、实验报告1.整理、描绘实验中记录的各点波形,并标出其幅值和宽度。2.总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使=90°,如何调整。3.讨论、分析实验中出现的各种现象。六、注意事项参照实验一和实验二的注意事项。七、思考题1.锯齿波同步移相触发电路有哪些特点?2.锯齿波同步移相触发电路的移相范围与哪些参数有关?3.为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大。实验四 西门子TCA785集成触发电路实验一、实验目的1.加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。2.掌握西门子的Tca785集成锯齿波同步

16、移相触发电路的调试方法。二、实验所需挂件及附件序号型号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK03-1 晶闸管触发电路该挂件包含“单相集成触发电路”等模块。3双踪示波器自备三、实验线路及原理西门子Tca785集成电路的内部框图如图4-1所示。Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。同步信号从TCA785集成电路的第5脚输入,“过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。“同步寄存器”输出控制锯齿波发生电路,锯齿波的

17、斜率大小由第9脚外接电阻和10脚外接电容决定;输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲,移相控制电压从11脚输入。图4-1西门子Tca785集成电路内部框图具体电路如下图所示:图4-2Tca785集成移相触发电路原理图电位器RP1主要调节锯齿波的斜率,电位器RP2则调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180O,可供单相整流及逆变实验用,各点波形请参考图4-3。图4-3单相集成锯齿波触发电路的各点电压波形(=900)电位器RP1、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。四

18、、实验内容1.Tca785集成移相触发电路的调试。2.Tca785集成移相触发电路各点波形的观察和分析。五、实验方法1.将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的

19、“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作;用双踪示波器一路探头观测15V的同步电压信号,另一路探头观察Tca785触发电路,同步信号“1”点的波形,“2”点锯齿波,调节斜率电位器RP1,观察“2”点锯齿波的斜率变化,“3”、“4”互差1800的触发脉冲;最后观测输出的四路触发电压波形,其能否在30°170°范围内移相?同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。观察“2”点的锯齿波波形,调节电位器RP1,观测“2”点锯齿波斜率的变化。观察“3”、“4”两点输出脉冲的波形,记下各波形的幅值与宽度

20、。2.调节触发脉冲的移相范围调节RP2电位器,用示波器观察同步电压信号和“3”点U3的波形,观察和记录触发脉冲的移相范围。3.调节电位器RP2使=60°,观察并记录U1U4及输出 “G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。U1U2U3U4幅值(V)宽度(ms)六、实验报告1.整理、描绘实验中记录的各点波形,并标出其幅值和宽度。2.讨论、分析实验中出现的各种现象。七、注意事项参照实验一的注意事项。八、思考题1.Tca785触发电路有哪些特点?2.Tca785触发电路的移相范围

21、和脉冲宽度与哪些参数有关?实验五 单相半波可控整流电路实验一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。(3)了解续流二极管的作用。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02 晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。3DJK03-1 晶闸管触发电路该挂件包含“单结晶体管触发电路”模块。4DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 5D42三相可调电阻6双踪示波器自备7万用表自备三、实验内容1.单结晶

22、体管触发电路的调试。2.单结晶体管触发电路各点电压波形的观察并记录。3.单相半波整流电路带电阻性负载时Ud/U2= f()特性的测定。4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察。四、实验方法1.单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能

23、否在30°170°范围内移动?2.单相半波可控整流电路接电阻性负载触发电路调试正常后,按图5-1电路图接线。将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压Ud、晶闸管VT两端电压UVT的波形,调节电位器RP1,观察 =30°、60°、90°、120°、150°时Ud、UVT的波形,并测量直流输出电压Ud和电源电压U2,记录于下表中。30°60°90°120°150°U2Ud(记录值)Ud/U2Ud(计算值)计算公式:Ud=0.45U2(1+cos)/2图5-

24、1 单相半波可控整流电路3.单相半波可控整流电路接电阻电感性负载将负载电阻R改成电阻电感性负载(由电阻器与平波电抗器Ld串联而成)。暂不接续流二极管VD1,在不同阻抗角阻抗角 =tg-1(L/R),保持电感量不变,改变R的电阻值,注意电流不要超过1A情况下,观察并记录 =30°、60°、90°、120°时的直流输出电压值Ud及UVT的波形。30°60°90°120°150°U2Ud(记录值)Ud/U2Ud(计算值)接入续流二极管VD1,重复上述实验,观察续流二极管的作用,以及UVD1波形的变化。30

25、76;60°90°120°150°U2Ud(记录值)Ud/U2Ud(计算值) 计算公式: Ud = 0.45U2(l十cos)/2五、实验报告1.画出=90°时,电阻性负载和电阻电感性负载的Ud、UVT波形。2.画出电阻性负载时Ud/U2=f()的实验曲线,并与计算值Ud的对应曲线相比较。3.分析实验中出现的现象,写出体会。 六、注意事项1.参照实验一的注意事项。2.在本实验中触发电路选用的是单结晶体管触发电路,同样也可以用锯齿波同步移相触发电路来完成实验。 3.在实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶

26、闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误触发。4.为避免晶闸管意外损坏,实验时要注意以下几点:在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通主电路。在接通主电路前,必须先将控制电压Uct调到零,且将负载电阻调到最大阻值处;接通主电路后,才可逐渐加大控制电压Uct,避免过流。要选择合适的负载电阻和电感,避免过流。在无法确定的情况下,应尽可能选用大的电阻值。 (5)由于晶闸管持续工作时,需要有一定的维持电流,故要使晶闸管主电路可靠工作,其通过的电流不能太小,否则可能会造成晶闸管时断时续,工作不可靠。在本实验装置中,要保证晶闸管正常工作,负载电流必

27、须大于50mA以上。(6)在实验中要注意同步电压与触发相位的关系,例如在单结晶体管触发电路中,触发脉冲产生的位置是在同步电压的上半周,而在锯齿波触发电路中,触发脉冲产生的位置是在同步电压的下半周,所以在主电路接线时应充分考虑到这个问题,否则实验就无法顺利完成。(7)使用电抗器时要注意其通过的电流不要超过1A,保证线性。七、思考题1.单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系? 2.单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?实验六 单相桥式半控整流电路实验一、实验目的1.加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。2.了解续流二极管在

28、单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02 晶闸管主电路该挂件包含“晶闸管”以及“电感”等几个模块。3DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。4DJK06 给定及实验器件该挂件包含“二极管”等几个模块。5D42三相可调电阻6双踪示波器自备7万用表自备三、实验线路及原理本实验线路如图7-1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸

29、管,图中的R用D42三相可调电阻,将两个 900接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。图6-1 单相桥式半控整流电路实验线路图四、实验内容1.锯齿波同步触发电路的调试。2.单相桥式半控整流电路带电阻性负载。3.单相桥式半控整流电路带电阻电感性负载。4.单相桥式半控整流电路带反电势负载(选做)。五、实验方法1.将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK

30、03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察“锯齿波同步触发电路”各观察孔的波形。2.锯齿波同步移相触发电路调试:其调试方法与实验三相同。令Uct=0时(RP2电位器顺时针转到底)170o。3.单相桥式半控整流电路带电阻性负载:按原理图7-1接线,主电路接可调电阻R,将电阻器调到最大阻值位置,按下“启动”按钮,用示波器观察负载电压Ud、晶闸管两端电压UVT和整流二极管两端电压UVD1的波形,调节锯齿波同步移相触发电路上的移相控制电位器RP2,观察并记录在不同角时Ud、UVT、UVD1的波形,测量相应电源电压U2和负载电压Ud的数值,记录于下表中。

31、 30° 60° 90° 120° 150°U2Ud(记录值)Ud/U2Ud(计算值)计算公式: Ud = 0.9U2(1+cos)/2(4)单相桥式半控整流电路带电阻电感性负载 断开主电路后,将负载换成将平波电抗器Ld(70OmH)与电阻R串联。不接续流二极管VD3,接通主电路,用示波器观察不同控制角时Ud、UVT、UVD1、Id的波形,并测定相应的U2、Ud数值,记录于下表中: 30° 60° 90°U2Ud(记录值)Ud/U2Ud(计算值)在=60°时,移去触发脉冲(将锯齿波同步触发电路上的“G3”

32、或“K3”拔掉),观察并记录移去脉冲前、后Ud、UVT1、UVT3、UVD1、UVD2、Id的波形。 接上续流二极管VD3,接通主电路,观察不同控制角时Ud、UVD3、Id 的波形,并测定相应的U2、Ud数值,记录于下表中: 30° 60° 90°U2Ud(记录值)Ud/U2Ud(计算值)在接有续流二极管VD3及=60°时,移去触发脉冲(将锯齿波同步触发电路上的“G3”或“K3”拔掉),观察并记录移去脉冲前、后Ud、UVT1、UVT3、UVD2、UVD1和Id的波形。(5)单相桥式半控整流电路带反电势负载(选做)要完成此实验还应加一只直流电动机。断开主电

33、路,将负载改为直流电动机,不接平波电抗器Ld,调节锯齿波同步触发电路上的RP2使Ud由零逐渐上升,用示波器观察并记录不同时输出电压Ud和电动机电枢两端电压Ua的波形。接上平波电抗器,重复上述实验。六、实验报告1.画出电阻性负载,电阻电感性负载时Ud/U2=f()的曲线。2.画出电阻性负载,电阻电感性负载,角分别为30°、60°、90°时的Ud、UVT的波形。 3.说明续流二极管对消除失控现象的作用。七、注意事项1.参照实验四的注意事项。2.在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关

34、拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。3.带直流电动机做实验时,要避免电枢电压超过其额定值,转速也不要超过1.2倍的额定值,以免发生意外,影响电机功能。4.带直流电动机做实验时,必须要先加励磁电源,然后加电枢电压,停机时要先将电枢电压降到零后,再关闭励磁电源。八、思考题1.单相桥式半控整流电路在什么情况下会发生失控现象?2.在加续流二极管前后,单相桥式半控整流电路中晶闸管两端的电压波形如何?实验七 单相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解单相桥式全控整流及逆变电路的工作原理。(2)研究单相桥式变流电路整流的全过程。(3)研究单相桥式变流电路逆变的全过程,掌握

35、实现有源逆变的条件。(4)掌握产生逆变颠覆的原因及预防方法。二、实验所需挂件及附件序号型号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02 晶闸管主电路该挂件包含“晶闸管”以及“电感”等几个模块。3DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。4DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流” 等模块。5D42三相可调电阻6双踪示波器自备7万用表自备三、实验内容(1)单相桥式全控整流电路带电阻电感负载。(2)单相桥式有源逆变电路带电阻电感负载。(3)有源逆变电路逆变颠覆现象的观察。四、实验方法(1)触发电路的

36、调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。将控制电压Uct调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使=180°。将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流和逆变。将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的位置,并使Ulf和Ulr悬空,确保

37、晶闸管不被误触发。图7-1 单相桥式整流实验原理图图7-2 单相桥式有源逆变电路实验原理图(2)单相桥式全控整流按图1-8接线,将电阻器放在最大阻值处,按下“启动”按钮,保持Ub偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压Ud和晶闸管两端电压Uvt的波形,并记录电源电压U2和负载电压Ud的数值于下表中。 30° 60° 90° 120°U2Ud(记录值)Ud(计算值)计算公式:UdO.9U2(1+cos)/2(3)单相

38、桥式有源逆变电路实验按图1-9接线,将电阻器放在最大阻值处,按下“启动”按钮,保持Ub偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在=30°、60°、90°时,观察、记录逆变电流Id和晶闸管两端电压Uvt的波形,并记录负载电压Ud的数值于下表中。 30° 60° 90°U2Ud(记录值)Ud(计算值)(4)逆变颠覆现象的观察调节Uct,使=150°,观察Ud波形。突然关断触发脉冲(可将触发信号拆去),用双踪慢扫描示波器观察逆变颠覆现象,记录逆变颠覆时的Ud波形。五、实验报告(1)画出=30°、60&

39、#176;、90°、120°、150°时Ud和UVT的波形。(2)画出电路的移相特性Ud=f()曲线。(3)分析逆变颠覆的原因及逆变颠覆后会产生的后果。六、注意事项(1)参照实验四的注意事项(2)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。(3)为了保证从逆变到整流不发生过流,其回路的电阻R应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。七、思考题实现有源逆变的条件是什么?在本实验中是如何保证能满足这些条件?实验八三相

40、半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。二、实验所需挂件及附件序号型号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK02 晶闸管主电路 3DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放” 等几个模块。4DJK06 给定及实验器件该挂件包含“给定”等模块。5D42三相可调电阻6双踪示波器自备7万用表自备三、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3时

41、间有电流流过,变压器利用率较低。图8-1中晶闸管用DJK02正桥组的三个,电阻R用D42三相可调电阻,将两个900接成并联形式,Ld电感用DJK02面板上的700mH,其三相触发信号由DJK02-1内部提供,只需在其外加一个给定电压接到Uct端即可。直流电压、电流表由DJK02获得。图8-1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。(2)研究三相半波可控整流电路带电阻电感性负载。五、实验方法(1)DJK02和DJK02-1上的“触发电路”调试 打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

42、将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使=

43、150°(注意此处的表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK0

44、2“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1VT6晶闸管门极和阴极之间的触发脉冲是否正常。(2)三相半波可控整流电路带电阻性负载按图8-1接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使能从30°到180°范围内调节,用示波器观察并纪录三相电路中=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应的电源电压U2及Ud的数值于下表中30°60°90°120°150°U

45、2Ud(记录值)Ud/U2Ud(计算值)计算公式:Ud1.17U2cos (030O) Ud=0.675U21+cos(a+) (30o150o)(3)三相半波整流带电阻电感性负载将DJK02上700mH的电抗器与负载电阻R串联后接入主电路,观察不同移相角时Ud、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出90o时的Ud及Id波形图。30°60°90°120°U2Ud(记录值)Ud/U2Ud(计算值)六、实验报告绘出当90o时,整流电路供电给电阻性负载、电阻电感性负载时的Ud及Id的波形,并进行分析讨论。七、注意事项(1)可参考实验六的注

46、意事项 (1)、(2)。(2)整流电路与三相电源连接时,一定要注意相序,必须一一对应。八、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?实验九三相半波有源逆变电路实验一、实验目的研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK02 晶闸管主电路 3DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。4DJK06 给定及实

47、验器件该挂件包含“二极管”等模块。5DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。6D42三相可调电阻7双踪示波器自备8万用表自备三、实验线路及原理其工作原理详见电力电子技术教材中的有关内容。 晶闸管可选用DJK02上的正桥,电感用DJK02上的Ld=700mH,电阻R选用D42三相可调电阻,将两个900接成串联形式,直流电源用DJK01上的励磁电源,其中DJK10中的心式变压器用作升压变压器使用,变压器接成Y/Y接法,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出。直流电压、电流表均在DJK02上。图9-1三相半波有源逆变电路实

48、验原理图四、实验内容三相半波整流电路在整流状态工作下带电阻电感性负载的研究。五、实验方法(1)DJK02和DJK02-1上的“触发电路”调试 打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率

49、尽可能一致。将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使=120°(注意此处的表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。用8芯的扁平电缆,

50、将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1VT6晶闸管门极和阴极之间的触发脉冲是否正常。(2)三相半波整流及有源逆变电路按图3-11接线,将负载电阻放在最大阻值处,使输出给定调到零。按下“启动”按钮,此时三相半波处于逆变状态,=150o,用示波器观察电路输出电压Ud波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电

51、压值向零靠近,当到零电压的时候,也就是=90o,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。在这过程中记录=30O、60o、90o、120o、150o时的电压值以及波形。30O60O90O120O150OU1六、实验报告(1)画出实验所得的各特性曲线与波形图。(2)对可控整流电路在整流状态与逆变状态的工作特点作比较。七、注意事项(1)可参考实验六的注意事项的(1)、(2)。(2)为防止逆变颠覆,逆变角必须安置在90o30o范围内。即Uct0时,30o,调整Uct时,用直流电压表监视逆变电压,待逆变电压接近零时,必须缓慢操作。(3)在实验过程中调节,必须监视主电路电流,防止的变化引

52、起主电路出现过大的电流。(4)在实验接线过程中,注意三相心式变压器高压侧的和中压侧的中线不能接一起。(5)有时会发现脉冲的相位只能移动120°左右就消失了,这是因为触发电路的原因,触发电路要求相位关系按A、B、C的排列顺序,如果A、C两相相位接反,结果就会如此,对整流实验无影响,但在逆变时,由于调节范围只能到120°,实验效果不明显,用户可自行将四芯插头内的A、C相两相的导线对调,就能保证有足够的移相范围。八、思考题(1)在不同工作状态时可控整流电路的工作波形。(2)可控整流电路在60o和90o时输出电压有何差异?实验十三相桥式半控整流电路实验一、实验目的(1)了解三相桥式

53、半控整流电路的工作原理及输出电压,电流波形。(2)了解晶闸管在带电阻性及电阻电感性负载,在不同控制角下的工作情况。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK02 晶闸管主电路 3DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放” 等几个模块。4DJK06 给定及实验器件该挂件包含“二极管”等模块。5D42三相可调电阻6双踪示波器自备7万用表自备三、实验线路及原理在中等容量的整流装置或要求不可逆的电力拖动中,可采用比三相全控桥式整流电路更简单、经济的三相桥式半控整流电路。它由共阴极接法的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,因此这种电路兼有可控与不可控两者的特性。共阳极组三个整流二极管总是在自然换流点换流,使电流换到比阴级电位更低的一相,而共阴极组三个晶闸管则要在触

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论