电子科大信号系统英文版课件Chapter9 LaplaceTransform-B_第1页
电子科大信号系统英文版课件Chapter9 LaplaceTransform-B_第2页
电子科大信号系统英文版课件Chapter9 LaplaceTransform-B_第3页
电子科大信号系统英文版课件Chapter9 LaplaceTransform-B_第4页
电子科大信号系统英文版课件Chapter9 LaplaceTransform-B_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、9 The Laplace Transform 9. The Laplace Transform 9.1 The Laplace Transform (1) Definition(2) Region of Convergence ( ROC )ROC: Range of for X(s) to convergeRepresentation: A. Inequality B. Region in S-plane9 The Laplace TransformExample for ROCReReS-planeS-planeImIm-a-a9 The Laplace Transform (3) Re

2、lationship between Fourier and Laplace transform Example 9.1 9.2 9.3 9.5 9 The Laplace Transform 9.2 The Region of Convergence for Laplace TransformProperty1: The ROC of X(s) consists of strips parallel to j-axis in the s-plane.Property2: For rational Laplace transform, the ROC does not contain any

3、poles.Property3: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s- plane9 The Laplace TransformProperty4: If x(t) is right sided, and if the line Res=0 is in the ROC, then all values of s for which Res0 will also in the ROC. 9 The Laplace TransformProperty5: I

4、f x(t) is left sided, and if the line Res=0 is in the ROC, then all values of s for which Res0 will also in the ROC. x(t)T2te-0te-1t9 The Laplace TransformProperty6: If x(t) is two sided, and if the line Res=0 is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line

5、Res=0 . 9 The Laplace TransformS-planeReReReImImImRLLR9 The Laplace TransformProperty7: If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.Property8: If the Laplace transform X(s) of x(t)

6、is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.Example 9.7 9.8 9 The Laplace Transform Appendix Partial Fraction ExpansionConsider a fracti

7、on polynomial:Discuss two cases of D(s)=0, for distinct root and same root.9 The Laplace Transform(1) Distinct root:thus9 The Laplace TransformCalculate A1 : Multiply two sides by (s-1):Let s=1, so Generally9 The Laplace Transform(2) Same root:thusFor first order poles:9 The Laplace TransformMultipl

8、y two sides by (s-1)r : For r-order poles:So 9 The Laplace Transform 9.3 The Inverse Laplace TransformSo9 The Laplace TransformThe calculation for inverse Laplace transform:(1) Integration of complex function by equation.(2) Compute by Fraction expansion. General form of X(s):Important transform pai

9、r:Example 9.9 9.10 9.11 9 The Laplace Transform 9.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero PlotGeneral form of X(s):Relation between Fourier and Laplace transform:9 The Laplace Transformor9 The Laplace Transform 9.4.1 First-order SystemPole-zero plot:System function of firs

10、t-order system:9 The Laplace Transform9 The Laplace Transform 9.4.2 All-Pass SystemPole-zero plot:System function :9 The Laplace TransformFrequency response :9 The Laplace Transform 9.5 Properties of the Laplace Transform 9.5.1 Linearity of the Laplace TransformExample 9.13 9 The Laplace Transform 9

11、.5.2 Time Shifting9 The Laplace Transform 9.5.3 Shifting in the s-Domainr1r2r2+Re(s0)r1+Re(s0)9 The Laplace Transform9 The Laplace Transform 9.5.4 Time ScalingEspeciallyr1r2r1/ar2/ar2/ar1/aS-plane9 The Laplace Transform 9.5.5 ConjugationWhen x(t) is real, X(s)=X*(s*) 9.5.6 Convolution Property9 The

12、Laplace Transform 9.5.7 Differentiation in the Time Domain9 The Laplace Transform 9.5.8 Differentiation in the s-DomainExample 9.14 9.159 The Laplace Transform 9.5.9 Integration in the Time-DomainUnder the specific constrains that x(t)=0 for t0 contains no impulses or highter order singularities at

13、the origin,Initial-value theorem:Final-value theorem:9 The Laplace Transform 9.5.10 The Initial- and Final-Value TheoremsExample 9.16Page 691: Table 9.19 The Laplace Transform 9.5.11 Table of PropertiesPage 692: Table 9.2 9.6 Some Laplace Transform Pairs9 The Laplace Transform9.7 Analysis and Charac

14、terization of LTI Systems Using the Laplace TransformSystem output: Y(s)=H(s)X(s) LTI system x(t)y(t)H(s) - System function ( Transfer/transition function )9 The Laplace Transform9.7.1 Causality(1) The ROC associated with the system function for a causal system is a right-half plane.(2) For a system

15、 with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.Causal LTI system: h(t)=0 for t0 .Example 9.17 9.18 9.199 The Laplace Transform9.7.2 Stability(1) An LTI system is stable if and only if the ROC of its sys

16、tem function H(s) includes the j-axis.(2) A causal system with rational system function H(s) is stable if only if all of the poles of H(s) lie in the left-half of the s-plane - I.e., all of the poles have negative real parts.Example 9.20 9.219 The Laplace Transform9.7.3 LTI Systems Characterized by

17、Linear Constant-Coefficient Differential EquationsDifferential equation:Example 9.24so9 The Laplace Transform9.7.4 Examples Relating System Behavior to the System FunctionExample 9.25 9.26 9 The Laplace Transform9.8 System Function Algebra and Block Diagram Representation9.8.1 System Function for In

18、terconnections of LTI Systems9 The Laplace Transform(1) Parallel interconnectionFor overall system: h(t)=h1(t)+h2(t) and H(s)=H1(s)+H2(s)9 The Laplace Transform(2) Series interconnectionFor overall system: h(t)=h1(t)*h2(t) and H(s)=H1(s)H2(s)9 The Laplace Transform(3) Feedback interconnectionFor ove

19、rall system:9 The Laplace Transform9.8.2 Block Diagram Representations for Causal LTI Systems Described by Differential Equations and Rational System FunctionsBasic elements: (1) Integrator (2) Amplifier (3) Adder1sk9 The Laplace TransformBlock Diagram construction: (1) Direct form (2) Parallel form : H(s) = H1(s) + H2(s) (3) Series form : H(s) =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论