




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9 The Laplace Transform 9. The Laplace Transform 9.1 The Laplace Transform (1) Definition(2) Region of Convergence ( ROC )ROC: Range of for X(s) to convergeRepresentation: A. Inequality B. Region in S-plane9 The Laplace TransformExample for ROCReReS-planeS-planeImIm-a-a9 The Laplace Transform (3) Re
2、lationship between Fourier and Laplace transform Example 9.1 9.2 9.3 9.5 9 The Laplace Transform 9.2 The Region of Convergence for Laplace TransformProperty1: The ROC of X(s) consists of strips parallel to j-axis in the s-plane.Property2: For rational Laplace transform, the ROC does not contain any
3、poles.Property3: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s- plane9 The Laplace TransformProperty4: If x(t) is right sided, and if the line Res=0 is in the ROC, then all values of s for which Res0 will also in the ROC. 9 The Laplace TransformProperty5: I
4、f x(t) is left sided, and if the line Res=0 is in the ROC, then all values of s for which Res0 will also in the ROC. x(t)T2te-0te-1t9 The Laplace TransformProperty6: If x(t) is two sided, and if the line Res=0 is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line
5、Res=0 . 9 The Laplace TransformS-planeReReReImImImRLLR9 The Laplace TransformProperty7: If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.Property8: If the Laplace transform X(s) of x(t)
6、is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.Example 9.7 9.8 9 The Laplace Transform Appendix Partial Fraction ExpansionConsider a fracti
7、on polynomial:Discuss two cases of D(s)=0, for distinct root and same root.9 The Laplace Transform(1) Distinct root:thus9 The Laplace TransformCalculate A1 : Multiply two sides by (s-1):Let s=1, so Generally9 The Laplace Transform(2) Same root:thusFor first order poles:9 The Laplace TransformMultipl
8、y two sides by (s-1)r : For r-order poles:So 9 The Laplace Transform 9.3 The Inverse Laplace TransformSo9 The Laplace TransformThe calculation for inverse Laplace transform:(1) Integration of complex function by equation.(2) Compute by Fraction expansion. General form of X(s):Important transform pai
9、r:Example 9.9 9.10 9.11 9 The Laplace Transform 9.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero PlotGeneral form of X(s):Relation between Fourier and Laplace transform:9 The Laplace Transformor9 The Laplace Transform 9.4.1 First-order SystemPole-zero plot:System function of firs
10、t-order system:9 The Laplace Transform9 The Laplace Transform 9.4.2 All-Pass SystemPole-zero plot:System function :9 The Laplace TransformFrequency response :9 The Laplace Transform 9.5 Properties of the Laplace Transform 9.5.1 Linearity of the Laplace TransformExample 9.13 9 The Laplace Transform 9
11、.5.2 Time Shifting9 The Laplace Transform 9.5.3 Shifting in the s-Domainr1r2r2+Re(s0)r1+Re(s0)9 The Laplace Transform9 The Laplace Transform 9.5.4 Time ScalingEspeciallyr1r2r1/ar2/ar2/ar1/aS-plane9 The Laplace Transform 9.5.5 ConjugationWhen x(t) is real, X(s)=X*(s*) 9.5.6 Convolution Property9 The
12、Laplace Transform 9.5.7 Differentiation in the Time Domain9 The Laplace Transform 9.5.8 Differentiation in the s-DomainExample 9.14 9.159 The Laplace Transform 9.5.9 Integration in the Time-DomainUnder the specific constrains that x(t)=0 for t0 contains no impulses or highter order singularities at
13、the origin,Initial-value theorem:Final-value theorem:9 The Laplace Transform 9.5.10 The Initial- and Final-Value TheoremsExample 9.16Page 691: Table 9.19 The Laplace Transform 9.5.11 Table of PropertiesPage 692: Table 9.2 9.6 Some Laplace Transform Pairs9 The Laplace Transform9.7 Analysis and Charac
14、terization of LTI Systems Using the Laplace TransformSystem output: Y(s)=H(s)X(s) LTI system x(t)y(t)H(s) - System function ( Transfer/transition function )9 The Laplace Transform9.7.1 Causality(1) The ROC associated with the system function for a causal system is a right-half plane.(2) For a system
15、 with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.Causal LTI system: h(t)=0 for t0 .Example 9.17 9.18 9.199 The Laplace Transform9.7.2 Stability(1) An LTI system is stable if and only if the ROC of its sys
16、tem function H(s) includes the j-axis.(2) A causal system with rational system function H(s) is stable if only if all of the poles of H(s) lie in the left-half of the s-plane - I.e., all of the poles have negative real parts.Example 9.20 9.219 The Laplace Transform9.7.3 LTI Systems Characterized by
17、Linear Constant-Coefficient Differential EquationsDifferential equation:Example 9.24so9 The Laplace Transform9.7.4 Examples Relating System Behavior to the System FunctionExample 9.25 9.26 9 The Laplace Transform9.8 System Function Algebra and Block Diagram Representation9.8.1 System Function for In
18、terconnections of LTI Systems9 The Laplace Transform(1) Parallel interconnectionFor overall system: h(t)=h1(t)+h2(t) and H(s)=H1(s)+H2(s)9 The Laplace Transform(2) Series interconnectionFor overall system: h(t)=h1(t)*h2(t) and H(s)=H1(s)H2(s)9 The Laplace Transform(3) Feedback interconnectionFor ove
19、rall system:9 The Laplace Transform9.8.2 Block Diagram Representations for Causal LTI Systems Described by Differential Equations and Rational System FunctionsBasic elements: (1) Integrator (2) Amplifier (3) Adder1sk9 The Laplace TransformBlock Diagram construction: (1) Direct form (2) Parallel form : H(s) = H1(s) + H2(s) (3) Series form : H(s) =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人买地合同标准文本
- OEM合同木门代工合同标准文本
- 设定财务目标的S原则计划
- 年度项目管理的要点计划
- 个人劳动施工合同标准文本
- 疾病预防科工作总结与未来计划
- 2025【标准合同】中英文租赁合同范本
- 住建部合同标准文本福建
- cdc对狂犬病十日观察法的解读
- 班级多元文化教育的实践探索计划
- (新课标)专题08+易考必考典型选择题专项复习- 三年级语文下册期末备考(统编版)
- 2024年中央戏剧学院招聘笔试真题
- 成都设计咨询集团有限公司2025年社会公开招聘(19人)笔试参考题库附带答案详解
- 药学知识联合用药
- 2025年江苏太仓市文化教育投资集团有限公司招聘笔试参考题库附带答案详解
- 广东省中山市2024-2025学年九年级上学期期末语文试题
- 装饰装修木工施工合同
- 铁代谢障碍性贫血的相关检验课件
- DBJ50T-187-2014 重庆市住宅用水一户一表设计、施工及验收技术规范
- 2025年全球及中国双金属氰化物(DMC)催化剂行业头部企业市场占有率及排名调研报告
- 2024年晋中职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
评论
0/150
提交评论