2022届福建省龙岩市龙岩二中学毕业升学考试模拟卷数学卷含解析_第1页
2022届福建省龙岩市龙岩二中学毕业升学考试模拟卷数学卷含解析_第2页
2022届福建省龙岩市龙岩二中学毕业升学考试模拟卷数学卷含解析_第3页
2022届福建省龙岩市龙岩二中学毕业升学考试模拟卷数学卷含解析_第4页
2022届福建省龙岩市龙岩二中学毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各式属于最简二次根式的有( )ABCD2利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简

2、单图形,其中是轴对称但不是中心对称的图形是()ABCD3如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D4二次函数y3(x1)2+2,下列说法正确的是()A图象的开口向下B图象的顶点坐标是(1,2)C当x1时,y随x的增大而减小D图象与y轴的交点坐标为(0,2)5由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体

3、的主视图是()ABCD6如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A15mB25mC30mD20m7计算6m3÷(3m2)的结果是()A3mB2mC2mD3m8如图,等边ABC内接于O,已知O的半径为2,则图中的阴影部分面积为(   )A  B  C  D9如图,ADE绕正方形ABCD的顶点A顺时针旋转90°,得ABF,连接EF交AB于H,

4、有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个10如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm211要使分式有意义,则x的取值应满足( )Ax=2Bx2Cx2Dx212如图,直线l1l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC若ABC=67°,则1=()A23°B46°C67°D78°二、填空题:(本大题共6个小题,每小题4分,共24分)1

5、3方程的两个根为、,则的值等于_14分解因式8x2y2y_15如图,与中,AD的长为_.16如图,在矩形ABCD中,E是AD上一点,把ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是_17如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿OAB路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿OCBA路线向终点A匀速运动,点M,N同时从O点出

6、发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t0),OMN的面积为S则:AB的长是_,BC的长是_,当t3时,S的值是_18为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场)现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA求证:OCPPDA;若O

7、CP与PDA的面积比为1:4,求边AB的长(2)如图2,在(1)的条件下,擦去AO和OP,连接BP动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作MEBP于点E试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由20(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元

8、,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.21(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动22(8分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如

9、图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 APAD 求证:PDAB如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQBC已知 AD1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QMCN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由23(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女

10、生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)24(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°0.2588, sin75°0.9659,tan75°3.732,) 25(10分)如图1所示,点E在弦AB所对的优弧

11、上,且BE为半圆,C是BE上的动点,连接CA、CB,已知AB4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究下面是小明的探究过程,请补充完整按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y

12、1、y2的图象;结合函数图象,解决问题:连接BE,则BE的长约为 cm当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm26(12分)如图1,已知抛物线y=x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DHx轴于点H,过点A作AEAC交DH的延长线于点E(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的CFP沿直线AE平移得到CFP,将CFP沿CP翻

13、折得到CPF,记在平移过称中,直线FP与x轴交于点K,则是否存在这样的点K,使得FFK为等腰三角形?若存在求出OK的值;若不存在,说明理由27(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门

14、分析认为,336w513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;故选:B【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键2、A【解析】根据:如果一个图形沿

15、着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.3、B【解析】

16、易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90°,FEC+EFC90°,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为2×5;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键4、B【解析】由抛物线解析式可求得其开口方

17、向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案【详解】解:A、因为a30,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2+k中,对称轴为xh,顶点坐标为(h,k)5、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单

18、性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.6、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半7、B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可【详解】6m3÷(3m2)=6÷(3)(m3÷m2)=2m故选B.8、A【解析】解:连接OB、OC,连接AO并延长交BC

19、于H,则AHBCABC是等边三角形,BH=AB=,OH=1,OBC的面积= ×BC×OH=,则OBA的面积=OAC的面积=OBC的面积=,由圆周角定理得,BOC=120°,图中的阴影部分面积=故选A点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键9、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90°.AEAF,故此选项正确;AFE=AEF=DA

20、E+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FH·FE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.10、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底

21、面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=×62+×2×6×10=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.11、D【解析】试题分析:分式有意义,x+10,x1,即x的取值应满足:x1故选D考点:分式有意义的条件12、B【解析】根据圆的半径相等可知AB=AC,由等边对等角求出ACB,再由平行得内错角相等,最后由平角180°可求出1.【详解】根据题意得:AB=AC,ACB=ABC=67°,直线l1l2,2

22、=ABC=67°,1+ACB+2=180°,ACB=180°-1-ACB=180°-67°-67°=46º故选B【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,14、2y(2x+1)(2x1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案【详解】8x2y

23、-2y=2y(4x2-1)=2y(2x+1)(2x-1)故答案为2y(2x+1)(2x-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键15、【解析】先证明ABCADB,然后根据相似三角形的判定与性质列式求解即可.【详解】,ABCADB,, , AD=.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形灵活运用相似三角形的性质进行几何计算16、 【解析】由题意易得四边形ABFE是正方形,设AB=1,CF=x,则

24、有BC=x+1,CD=1, 四边形CDEF和矩形ABCD相似,CD:BC=FC:CD,即1:(x+1)=x:1,x=或x=(舍去), =,故答案为.【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.17、10, 1, 1 【解析】作CDx轴于D,CEOB于E,由勾股定理得出AB10,OC1,求出BEOBOE4,得出OEBE,由线段垂直平分线的性质得出BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,由三角形面积公式即可得出OMN的面积【详解】解:作CDx轴于D,CEOB于E,如图所示:由题意得:OA1,OB8,AOB

25、90°,AB10;点C的坐标(2,4),OC1,OE4,BEOBOE4,OEBE,BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,OMN的面积S×3×41;故答案为:10,1,1【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键18、x(x1)=1【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x1),即可列方程【详解】有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:x(x1)=1,故答案为x(x1)=1【点睛】本题考查了一

26、元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;10;(2)线段EF的长度不变,它的长度为25. 【解析】试题分析:(1)先证出C=D=90°,再根据1+3=90°,1+2=90°,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;(2)作MQAN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,

27、根据MEPQ,得出EQ=12PQ,根据QMF=BNF,证出MFQNFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB的长,最后代入EF=12PB即可得出线段EF的长度不变试题解析:(1)如图1,四边形ABCD是矩形,C=D=90°,1+3=90°,由折叠可得APO=B=90°,1+2=90°,2=3,又D=C,OCPPDA;OCP与PDA的面积比为1:4,OPPA=CPDA=14=12,CP=12AD=4,设OP=x,则CO=8x,在RtPCO中,C=90°,由勾股定理得 :x2=(8-x)2+42,解得:x=5,CD=A

28、B=AP=2OP=10,边CD的长为10;(2)作MQAN,交PB于点Q,如图2,AP=AB,MQAN,APB=ABP=MQP,MP=MQ,BN=PM,BN=QMMP=MQ,MEPQ,EQ=12PQMQAN,QMF=BNF,在MFQ和NFB中,QFM=NFB,QMF=BNF,MQ=BN,MFQNFB(AAS),QF=12QB,EF=EQ+QF=12PQ+12QB=12PB,由(1)中的结论可得:PC=4,BC=8,C=90°,PB=82+42=45,EF=12PB=25,在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为25考点:翻折变换(折叠问题);矩形的性质

29、;相似形综合题20、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台总费用为万元。方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台

30、电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。21、(1)150,(2)36°,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30

31、人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36°,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键22、(1)证明见解析(2) (3) 【解析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P,连接DP交BC于点E,此时PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由A

32、B-AP表示出BP,由对称的性质得到BP=BP,由平行得比例,求出所求比值即可;(3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到MFHNDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可【详解】(1)在图1中,设AD=BC=a,则有AB=CD=a,四边形ABCD是矩形,A=90°,PA=AD=BC=a,PD=a,AB=a,PD=AB;(2)如图,作点P关于BC的对称点P,连接DP交BC于点E,此时PDE的周长最小,设AD=PA=BC=a,则有AB=CD=a,BP=AB-P

33、A,BP=BP=a-a,BPCD, ;(3)GH=,理由为:由(2)可知BF=BP=AB-AP,AP=AD,BF=AB-AD,BQ=BC,AQ=AB-BQ=AB-BC,BC=AD,AQ=AB-AD,BF=AQ,QF=BQ+BF=BQ+AQ=AB,AB=CD,QF=CD,QM=CN,QF-QM=CD-CN,即MF=DN,MFDN,NFH=NDH,在MFH和NDH中, ,MFHNDH(AAS),FH=DH,G为CF的中点,GH是CFD的中位线,GH=CD=×2=【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判

34、定与性质,熟练掌握相似三角形的性质是解本题的关键23、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.24、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75°=0.60×3.732

35、=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60°,sinFAG=,sin60°=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用25、(1)详见解析;(2)详见解析;(3)6;6或4.1【解析】(1)由题意得出BC3cm时,CD2.85cm,从点C与点B重合开始,一直到BC4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BDBC2-CD20.9367(cm),得出ADAB+BD4.9367(cm),再由勾股定理求出AC即可;(2)描出补全后的表中各组数

36、值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;(3)BC6时,CDAC4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BEBC6即可;分两种情况:当CAB90°时,ACCD,即图象y1与y2的交点,由图象可得:BC6;当CBA90°时,BCAD,由圆的对称性与CAB90°时对称,AC6,由图象可得:BC4.1【详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC3cm时,CD2.85cm,从点C与点B重合开始,一直到BC4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如

37、图1所示:CDAB,BD=BC2-CD2=32-2.8520.9367(cm),ADAB+BD4+0.93674.9367(cm),AC=CD2+AD2=2.852+4.936725.70(cm);补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)BC6cm时,CDAC4.1cm,即点C与点E重合,CD与AC重合,BC为直径,BEBC6cm,故答案为:6;以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当CAB90°时,ACCD,即图象y1与y2的交点,由图象可得:BC6cm;当CBA90°

38、;时,BCAD,由圆的对称性与CAB90°时对称,AC6cm,由图象可得:BC4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1 【点睛】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键26、 (1)2 ;(2) ;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得ACOEAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,),找点C

39、关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据SMFP=SMQF+SMQP,得出SMFP= -m²+m+,根据解析式即可求得,MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=4,然后分三种情况

40、讨论求得即可本题解析:(1)对于抛物线y=x2+x+,令x=0,得y=,即C(0,),D(2,),DH=,令y=0,即x2+x+=0,得x1=1,x2=3,A(1,0),B(3,0),AEAC,EHAH,ACOEAH,=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(2,),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x;直线AE的解析式:y=x,联立得:F (0,),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,m2+m+),则Q(m, m),(0m2);SMF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论