第3讲直流电路习题讨论课,交流电路_第1页
第3讲直流电路习题讨论课,交流电路_第2页
第3讲直流电路习题讨论课,交流电路_第3页
第3讲直流电路习题讨论课,交流电路_第4页
第3讲直流电路习题讨论课,交流电路_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、海南风光直流电路习题课第二章 正弦交流电路正弦量的特征值及表示方法 正弦量的特征值 正弦量的表示方法正弦交流电路的分析与计算 2.2.1 单一参数的正弦交流电路清华大学电机系电工学教研室 唐庆玉编直流电路习题课例1:有源网络VUO如下图有源二端网络,用内阻为50k的电压表测出开路电压值是30V,换用内阻为100k 的电压表测得开路电压为50V,求该网络的戴维南等效电路。解: US =30/50 RS +30 US =50/100 RS +50UOUSRSRRS =200 kUS =150V US =1V、IS=1A 时, Uo=0V已知:US =10 V、IS=0A 时,Uo=1V求:US =

2、0 V、IS=10A 时, Uo=?US线性无源网络UOIS设解:(1)和( 2)联立求解得:当 US =1V、IS=1A 时,当 US =10 v、IS=0A 时,用叠加原理例2:US =0 V、IS=10A 时, 例3:求I1 、 I2之值。1A1A11+-1V1VI2I1ABCD采用叠加原理1A1A11+-1V1VI2I1ABCD使所有恒流源不起作用I1 = I2 =0 A1A1A11+-1V1VI2I1ABCD采用叠加原理使所有恒压源不起作用A,DB,C1I1I21A1A1I1=1AI2= 1AI1 = I2 =0 AI1=1A,I2= 1AI1=1A,I2= 1A交流电的概念 如果电

3、流或电压每经过一定时间 T 就重复变化一次,那么此种电流 、电压称为周期性交流电流或电压。如正弦波、方波、三角波、锯齿波 等。 记做: u(t) = u(t + T ) 第2章 正弦交流电路TutuTt 如果在电路中电动势的大小与方向均随时间按正弦规律变化,由此产生的电流、电压大小和方向也是正弦的,这样的电路称为正弦交流电路。 正弦交流电路ti正弦交流电也要规定正方向,表示电压或电流的瞬时方向 交流电路进行计算时,首先要规定物理量的正方向,然后才能用数字表达式来描述。实际方向和假设方向一致实际方向和假设方向相反ti正弦交流电的正方向iuR用小写字母表示交流瞬时值2.1.1 正弦波的特征量i:

4、电流幅值(最大值) : 角频率(弧度/秒) : 初相角特征量:为正弦电流的最大值正弦波特征量之一 - 幅度 在工程应用中常用有效值表示幅度。常用交流电表指示的电压、电流读数,就是被测物理量的有效值。标准电压220V,也是指供电电压的有效值。最大值电量名称必须大写,下标加 m。如:Um、Im则有(均方根值)可得当 时,交流直流热效应相当有效值电量必须大写,如:U、I有效值概念交流电流 i通过电阻R在一个周期T内产生的热量与一直流电流I通过同一电阻在同一时间T内产生的热量相等,那么称I的数值为i的有效值可得当 时,i= 2 I sin(t+)i可写为:同理:u= Um sin(t+)2mUU=u=

5、 2 U sin(t+)u可写为:问题与讨论 电器 220V最高耐压 =300V 假设购得一台耐压为 300V 的电器,是否可用于 220V 的线路上? 该用电器最高耐压低于电源电压的最大值,所以不能用。有效值 U = 220V 最大值 Um = 220V = 311V 电源电压 描述变化周期的几种方法 1. 周期 T: 变化一周所需的时间 单位:秒,毫秒.正弦波特征量之二 - 角频率3. 角频率 : 每秒变化的弧度 单位:弧度/秒2. 频率 f: 每秒变化的次数 单位:赫兹,千赫兹 .iT正弦波特征量之三 - 初相位: t = 0 时的相位,称为初相位或初相角。说明: 给出了观察正弦波的起点

6、或参考点,常用于描述多个正弦波相互间的关系。i:正弦波的相位角或相位()()2121 jjjwjwj-=+-+=tt 两个同频率正弦量间的相位差( 初相差) t0=00两种正弦信号的相位关系同相位 落后于相位落后领先于相位领先相位差为0与同相位可以证明同频率正弦波运算后,频率不变。如:结论: 因角频率不变,所以以下讨论同频率正弦波时, 可不考虑,主要研究幅度与初相位的变化。幅度、相位变化频率不变例幅度:已知:频率:初相位:A21 jjj-=90 -(-90 )= 180=()()2211 sin sinw90w-=+ =tIitIimm90如果相位差为+180 或-180 ,称为两波形反相例:

7、3.2.2 正弦波的相量表示方法瞬时值表达式相量必须小写前两种不便于运算,重点介绍相量表示法。波形图i 正弦波的表示方法:重点 概念 :一个正弦量的瞬时值可以用一个旋转矢量 在纵轴上的投影值来表示。 正弦波的相量表示法矢量长度 = 矢量与横轴夹角 = 初相位矢量以角速度 按逆时针方向旋转有效值1. 描述正弦量的有向线段称为相量 (phasor )。假设其 幅度用最大值表示 ,那么用符号:最大值相量的书写方式2. 在实际应用中,幅度更多采用有效值,那么用符号:mUmIUI 3. 相量符号U、I 包含幅度与相位信息。mUU或正弦波的相量表示法举例例1:将 u1、u2 用相量表示 相位:幅度:相量大

8、小设:U1U2相位哪一个领先?哪一个落后?U2U1领先于同频率正弦波的相量画在一起,构成相量图。例2:同频率正弦波相加 -平行四边形法则U2U1Uu= u1 +u2 = ()2221 sin2 jw+=tUu()11 sin2jw+tUu() sin2jw+tU21UUU+=U2U1U=180 用余弦定理求U:U2=U12+U22 2U1U2cos U2U1U用正弦定理求角:sin UU2sin = 1+ () sin2jw+tUu=新问题提出: 平行四边形法则可以用于相量运算,但不方便。故引入相量的复数运算法。 相量 复数表示法复数运算 相量的复数表示将相量放到复平面上,可如下表示:Uab+

9、1UjjsincosjUUjbaU+=+=a、b分别为U在实轴和虚轴上的投影欧拉公式jUj=eUj代数式 指数式 极坐标形式 jj+=+=jUjbaU)sin(cosab+1U设a、b为正实数jjeUjbaU=+=在第一象限在第四象限jjeUjbaU=-=jjeUjbaU=+-=在第二象限jjeUjbaU=-=在第三象限 在一、二象限,一般取值:180 0 在三、四象限,一般取值:0 -180 +1U11=602=120U2U33= -120计算相量的相位角时,要注意所在象限。如:43jU-=43jU+-=43jU-=43jU+=例:相量的复数运算1. 复数加 、减运算222111jbaUjb

10、aU+=+=设:jjUebbjaaUUU=+=)()(212121则:2. 复数乘、除法运算)(212121jj+=jeAAAAA乘法:212211jjjjeAAeAA=设:()212121jj-=jeAAAA除法: j称为90旋转因子乘以+j使相量逆时针转90乘以-j使相量顺时针转90说明:设:任一相量A则:=o90eAjA)(j复数符号法应用举例例1:瞬时值,求相量。已知: 求: i 、u 的相量 解:A506.86301003024.141jI+=ooV5.190110602206021.311jU-=-=-=oo求:例2:相量,求瞬时值。解: 已知两个频率都为 1000 Hz 的正弦电

11、流其相量形式为:A10A601003021oojeII=-=波形图瞬时值相量图复数符号法小结:正弦波的四种表示法 Tijj=+=UeUjbaUjUI符号说明瞬时值 - 小写u、i有效值 - 大写U、I复数、相量 - 大写 + “.U最大值 - 大写+下标一. 电阻电路 uiR根据 欧姆定律 设则2.2.1 单一参数的正弦交流电路tItRURuitUuwwwsin2sin2sin2=1. 频率相同2. 相位相同3. 有效值关系:电阻电路中电流、电压的关系4. 相量关系o0=UURIU=UI5.相量图o0=IIo0=UUo0=IRRI=电阻电路中的功率 uiR1. 瞬时功率 p:瞬时电压与瞬时电流

12、的乘积小写=2UIsin2 t2. (耗能元件)结论:1. 随时间变化tuipt电阻的瞬时功率波形图p=2UIsin2 t2. 平均功率有功功率P:一个周期内的平均值 大写 uiRP=UIU=IR=I2R=U2/R二.电感电路 基本关系式:设cos2=tLIdtdiLuww则iuL)90sin(2o+=tUw)90sin(2o+=tIwXL电感电路中电流、电压的关系 1. 频率相同 2. 相位相差 90 (u 领先 i 90 ))90sin(2o+=tUuwiu设:其中: U=IXL , XL= L3. 有效值 感抗()定义:4. 相量关系o0=II设:oo9090=IUUXLo0= I j

13、XL或 I=U/ j XL5. 相量图o0=IIo90=UUU= I j XL I=U/ j XL复数符号:有效值: I=U/ XLUI电感电路中复数形式的欧姆定律其中含有幅度和相位信息()LXjIU=电感电路中的功率1. 瞬时功率 p :iuL储存能量P 0P 0uiiuL电压电流实际方向p为正弦波,频率加倍 2. 平均功率 P 有功功率结论:纯电感不消耗能量,只和电源进行能量 交换能量的吞吐3. 无功功率 QQ 的单位:乏、千乏 (var、kvar) Q 的定义:电感瞬时功率所能到达的最大值。用 以衡量电感电路中能量交换的规模。基本关系式:设:三、电容电路uiC则: 1. 频率相同2. 相位相差 90 i 领先u 90 电容电路中电流、电压的关系iu3. 有效值或 容抗()定义:I则: 4. 相量关系设:那么:电容电路中复数形式的欧姆定律其中含有幅度和相位信息领先!电容电路中的功率ui1. 瞬时功率 p充电p放电放电P 0储存能量uiuiuiuiiut 2. 平均功率 P瞬时功率到达的最大值吞吐规模3. 无功功率 Q(电容性无功取负值)单位:var,乏1. 单一参数电路中的根本关系电路参数基本关系复阻抗L复阻抗电路参数基本关系C电路参数R基本关系复阻抗小 结 在正弦交流电路中,若正弦量用相量 表示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论