数学高考总复习重点椭圆的简单几何性质实用教案_第1页
数学高考总复习重点椭圆的简单几何性质实用教案_第2页
数学高考总复习重点椭圆的简单几何性质实用教案_第3页
数学高考总复习重点椭圆的简单几何性质实用教案_第4页
数学高考总复习重点椭圆的简单几何性质实用教案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、焦点的位置焦点在x轴上焦点在y轴上范围_顶点_轴长短轴长_,长轴长_焦点_焦距|F1F2|_对称性对称轴_,对称中心_离心率e_axa且bybbxb且ayaA1(a,0)、A2(a,0)B1(0,b)、B2(0,b)A1(0,a)、A2(0,a)B1(b,0)、B2(b,0)2b2aF1(c,0)、F2(c,0)F1(0,c)、F2(0,c)2cx轴和y轴(0,0)第1页/共22页第一页,共21页。想一想:能否用想一想:能否用a a和和b b表示表示(biosh)(biosh)椭圆的离心率椭圆的离心率e?e?第2页/共22页第二页,共21页。椭圆几何性质的应用椭圆几何性质的应用(1)椭圆的焦点

2、决定椭圆的位置,范围决定椭圆的大小,椭圆的焦点决定椭圆的位置,范围决定椭圆的大小,离心率决定了椭圆的扁圆程度离心率决定了椭圆的扁圆程度(chngd),对称性是椭,对称性是椭圆的重要特征,顶点是椭圆与对称轴的交点,是椭圆圆的重要特征,顶点是椭圆与对称轴的交点,是椭圆重要的特殊点;若已知椭圆的标准方程,则根据重要的特殊点;若已知椭圆的标准方程,则根据a、b的值可确定其性质的值可确定其性质(2)明确明确a,b的几何意义,的几何意义,a是长半轴长,是长半轴长,b是短半轴长,是短半轴长,不要与长轴长、短轴长混淆,由不要与长轴长、短轴长混淆,由c2a2b2,可得,可得“已知椭圆的四个顶点,求焦点已知椭圆的

3、四个顶点,求焦点”的几何作图法,只的几何作图法,只要以短轴的端点要以短轴的端点B1(或或B2)为圆心,以为圆心,以a为半径作弧交长为半径作弧交长轴于两点,这两点就是焦点轴于两点,这两点就是焦点名师名师(mn sh)点睛点睛1第3页/共22页第三页,共21页。第4页/共22页第四页,共21页。椭圆的离心率椭圆的离心率(xn l)对椭圆形状的影响对椭圆形状的影响2第5页/共22页第五页,共21页。题型一由椭圆题型一由椭圆(tuyun)方程求椭圆方程求椭圆(tuyun)的几何性质的几何性质 求椭圆求椭圆9x216y2144的长轴长、短轴长、离的长轴长、短轴长、离心率、焦点和顶点坐标心率、焦点和顶点坐

4、标思路探索思路探索 先将椭圆方程先将椭圆方程(fngchng)化为标准形式,化为标准形式,再利用再利用a、b、c之间的关系求解之间的关系求解【例1】第6页/共22页第六页,共21页。规律方法规律方法 解决此类问题的方法是将所给方程先化为标解决此类问题的方法是将所给方程先化为标准形式,然后根据准形式,然后根据(gnj)(gnj)方程判断出椭圆的焦点在方程判断出椭圆的焦点在哪个坐标轴上,再利用哪个坐标轴上,再利用a a,b b,c c之间的关系和定义,求之间的关系和定义,求椭圆的基本量椭圆的基本量第7页/共22页第七页,共21页。求椭圆求椭圆4x29y236的长轴长和焦距的长轴长和焦距(jioj)

5、、焦点坐标、顶点坐标和离心率焦点坐标、顶点坐标和离心率【变式1】第8页/共22页第八页,共21页。思路探索思路探索(tn su) 解答本题可先由已知信息判断焦解答本题可先由已知信息判断焦点所在坐标轴并设出标准方程,再利用待定系数法求点所在坐标轴并设出标准方程,再利用待定系数法求参数参数a,b,c.题型二由椭圆的几何题型二由椭圆的几何(j h)性质求标准方程性质求标准方程【例2】第9页/共22页第九页,共21页。规律方法规律方法 利用性质求椭圆的标准方程,通常采用待定系利用性质求椭圆的标准方程,通常采用待定系数法,而其关键数法,而其关键(gunjin)(gunjin)是根据已知条件确定其标准是根

6、据已知条件确定其标准方程的形式并列出关于参数的关系式,利用解方程方程的形式并列出关于参数的关系式,利用解方程( (组组) )求求解,同时注意解,同时注意a a、b b、c c、e e的内在联系以及对方程两种形式的内在联系以及对方程两种形式的讨论的讨论第10页/共22页第十页,共21页。【变式2】第11页/共22页第十一页,共21页。第12页/共22页第十二页,共21页。 (12分分)如图所示,椭圆的中心在原点,焦点如图所示,椭圆的中心在原点,焦点F1,F2在在x轴上,轴上,A,B是椭圆的顶点,是椭圆的顶点,P是椭圆上一点是椭圆上一点(y din),且,且PF1x轴,轴,PF2AB,求此椭圆的离

7、心,求此椭圆的离心率率 题型三求椭圆题型三求椭圆(tuyun)的离心率的离心率【例3】第13页/共22页第十三页,共21页。第14页/共22页第十四页,共21页。(2)在椭圆中涉及在椭圆中涉及(shj)三角形问题时,要充分利用椭圆三角形问题时,要充分利用椭圆的定义、正弦定理及余弦定理、全等三角形、相似三角的定义、正弦定理及余弦定理、全等三角形、相似三角形等知识形等知识第15页/共22页第十五页,共21页。【变式3】第16页/共22页第十六页,共21页。第17页/共22页第十七页,共21页。 已知在椭圆中,长轴长为已知在椭圆中,长轴长为2a,焦距为,焦距为2c,且,且ac10,ac4,求椭圆的标

8、准,求椭圆的标准(biozhn)方程方程 误区警示忽略椭圆焦点误区警示忽略椭圆焦点(jiodin)位置的讨论致误位置的讨论致误【示例(shl)】 由于题目中没有告诉我们焦点的位置,所求标准方程有由于题目中没有告诉我们焦点的位置,所求标准方程有两种情况:两种情况:焦点在焦点在x轴上;轴上;焦点在焦点在y轴上轴上第18页/共22页第十八页,共21页。第19页/共22页第十九页,共21页。 (1)根据已知条件求椭圆的标准方程根据已知条件求椭圆的标准方程(fngchng)的思路是的思路是“选标准,定参数选标准,定参数”,一般步骤是:,一般步骤是:求出求出a2,b2的值;的值;确定焦点所在的坐标轴;写出标准方程确定焦点所在的坐标轴;写出标准方程(fngchng)(2)当所求椭圆焦点不确定时一定要注意分类讨论当所求椭圆焦点不确定时一定要注意分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论