版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文案第一章 热力学的基本规律1. 热力学的平衡状态热力学的研究对象是由大量微观粒子组成的有限宏观系统. 与系统发生相互作用的其他物体称为外界 .按照系统与外界的相互作用状态,可将系统分为以下三种:孤立系:与外界既不发生质量交换,也不发生能量交换的系统;闭系:可与外界发生能量交换,而不发生质量交换的系统;开系:可与外界发生能量、质量交换的系统.热力学平衡态:当一个孤立系经过足够长的时间,将会达到这样一种状态,在这种状态下,系统的各种宏观性质在长时间内部发生变化,称之为热力学平衡态.状态参量: 在热力学平衡态下,系统的各种宏观性质不再变化而拥有固定值,用这些固定值就可以确定系统的宏观状态.
2、一般情况下,描述一个系统的状态参量有:热学参量(温度T )、几何参量(体积V )、力学参量(压强p )和电磁参量(D 、 H ) .2. 物态方程描述系统的状态参量之间关系的方程称为物态方程,以简单的固液气系统为例,其物态方程可表示为:fp,V ,T0另外,定义几个与物态方程有关的物理量:等压膨胀系数:等容压力系数:1 V V T1 p p T;p;V等温压缩系数:k1V.Vp根据物态方程,可得关系式:TVpT1;pT VVTp故可得三个系数之间的关系为:kp .气体的物态方程理想气体状态方程: pV NkB T .实际气体的范德瓦尔斯方程:pan2VnbnRT ,V2其中 an2 为压强修正
3、项, nb 是体积修正项。V 2简单固体与液体的物态方程对于简单固体和液体,可通过实验测得体胀系数和等温压缩系数k ,它们的特点如下:固体和液体的膨胀系数是温度的函数,与压强近似无关。和 k 的数值都很小,在一定的温度范围内可以近似看成常量。由此可得,物态方程为:V T , pV0 T0 , p0 1TT0kpp0。精彩文档实用标准文案顺磁性固体将顺磁性固体置于磁场中,顺磁性固体会被磁化。磁化强度M ,磁场强度H 与温度 T 的关系:f M , H ,T 0 。实验测得一些顺磁性固体的磁物态方程为:MC H ;T另一些顺磁性固体的磁物态方程为:MCH ,T其中, C 和是常量,其数值因不同的物
4、质而异。3. 功WpdV 。气体准静态过程的体积功:液体表面张力做功:WdA ,为单位长度的表面张力。电介质准静态过程中电位移改变dD 时外界所作的功为:WVEdD磁介质准静态过程中磁感应强度改变dB 时外界所作的功:WVHdB4. 热力学第一定律。若系统经历一个无穷小的过程,则系统内能的增量与外界做功和外界传热的关系为:dUQW 。热力学第一定律表明,做功与热量传递在改变系统内能上是等效的。5. 热容与焓热容:一个系统温度升高1K 所吸收的热量,即C limQ,T0T热容是一个广延量,用cm 表示 1mol 物质的热容,成为摩尔热容。系统在等容过程的热容用符号CV 表示:CVlimUU。TT
5、T0VV系统在等压过程中的热容用符号Cp 表示:C plimUpdVUppTpT pTT0引入状态函数焓: HUpV ,则有;pCp6. 气体的内能HT。p从微观角度看, 在没有外场的情形下, 气体无规则运动的能量包括分子的动能、 分子之间相互作用的势能以及分子内部运动的能量。根据焦耳的自由膨胀实验,理想气体的内能只是温度的函数, 与体积无关, 即从微观上看, 理想气体的内能只是分子的动能。dU; C pdH于是可得:CV;dTdTU U0CV dT ; H H 0C p dT 。根据焓的定义:H UpVU nRT ,可得 Cp CVnR,再设C p CV ,得:CVnR , C pnR (迈
6、耶公式) 。117. 理想气体的准静态过程等温过程: pV const ;精彩文档实用标准文案等容过程:pconst ;等压过程:TVTconst ;绝热过程:pVconst 。注:系数可通过测定空气中的声速获得。声音在空间中传播时,介质空间会发生周期性的压缩与膨胀,自然导致压强的变化。由于气体的导热系数很小,因此在声音传播过程中,热量传导很难发生,故可认为是绝热过程,因此根据牛顿的声速公式adp可得da 2p2ppSS其中为气体密度,1为单位质量气体的体积。8. 热力学第二定律克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其它变化。开尔文表述:不可能从单一热源吸收热量使之完全变成有
7、用的功而不引起其它变化。热力学第二定律的开尔文表述表明, 第二类永动机不可能造成。 所谓第二类永动机是指能够从单一热源吸热,使之完全变成有用功而不引起其它影响的机器。9. 卡诺循环与卡诺定理卡诺循环: 卡诺循环过程以理想气体为研究对象研究热功转化的效率问题,由两个等温过程和两个绝热过程组成。在整个循环中,气体从高温热源吸收热量,对外做功,其效率为:W1Q21T2 。Q1Q1T1卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高。推论:所有工作于两个一定温度之间的可逆热机的效率相等。根据卡诺定理,工作于两个一定温度之间的热机的效率不可能大于可逆热机的效率,即1Q21 T2Q1T1由
8、此可得克劳修斯不等式:Q1Q20 ,(等号只适用于可逆循环过程)T1T2其中 Q1 为热机从高温热源吸收的热量, Q2也定义为热机从低温热源吸收的热量(数值为负数) 。将克劳修斯不等式推广到n 个热源的情形,可得:Qi0 ,iTi对于更普遍的循环过程,应将求和号换成积分号,即10. 熵与热力学基本方程Q0 。T根据克劳修斯不等式,考虑系统从初态A 经可逆过程R 到达终态 B ,又从状态 B 经另一可逆过程 R' 回到状态 A 。在上述循环过程中,有BQRA QR'0ATB T可见,在可逆循环过程中,dQ 与路径无关,由此定义状态函数熵(S ),从状态 A 到状态 B的熵变定义为
9、:TSBSABQAT精彩文档实用标准文案注:仅对可逆过程,dQ 才与路径无关。对不可逆过程,B 和 A 两态的熵变仍沿从A 态到 B 态T的可逆过程的积分来定义。在这种情形下,可逆过程与不可逆过程所引起的系统状态变化相同,但外界的变化是不同的。Q对前面熵变等式取微分:dS,表示无穷小的可逆过程中的熵变。T根据热力学第二定律, 可得可逆过程中 Q TdS ,结合热力学第一定律可得热力学的基本微分方程:dUTdSpdV若系统与外界之间除了体积功,还有其他形式的功,可将上式表示为dU TdSYi dyii热力学第二定律的数学表示:dUTdSpdV ,注:根据克劳修斯不等式和熵的定义,可知在任意无穷小
10、过程中,TdSQ 。熵增加原理:系统在绝热条件下,熵永不减少,即SB SA0 (等号只适用于可逆过程) 。11. 自由能与吉布斯函数FU TS。约束在等温条件下的系统,定义状态函数:根据热力学第二定律可得,等温条件下dFpdV ,表明在等温条件下,系统自由能的增加量不大于外界对系统做的功。在等温等容过程中可得: dF 0 ,即等温等容条件下,系统的自由能永不增加,或者表述为在等温等容条件下的不可逆过程朝着使系统自由能减少的方向进行。约束在等压条件下的系统,定义状态函数:GUTSpV 。同理可得:等温等压条件下, dG 0 ,即等温等压条件下,系统的吉布斯函数永不增加,或者表述为等温等压条件下的
11、不可逆过程朝着使系统吉布斯函数减少的方向进行。第二章均匀物质的热力学性质1. 内能、焓、自由能和吉布斯函数的全微分热力学基本方程即为内能的全微分形式:dUTdSpdV ,根据偏导数关系可得:Tp;VSS V内能的确定: dUCV dTTpp dV 。TV注:熵的确定:dSCV dTpdV 。TT V焓的全微分形式为:dHTdSVdp ,TV;同理可得:pSSp焓的确定: dHC pdTV TVdp 。Tp注:熵的确定:dSCpdTVdp 。TTp自由能的全微分形式为:dFSdTpdV ,Sp。同理可得:V TT V精彩文档实用标准文案吉布斯函数的全微分形式为:dGSdT Vdp ,SV。同理可
12、得:p TTp其中,式称为麦克斯韦关系。2. 气体的节流过程和绝热膨胀过程气体从高压处通过多孔塞不断地流到低压处,并达到定常状态,这个过程叫做节流过程。在节流过程中,多孔塞两边的温度发生了明显变化,这个效应称为焦耳- 汤姆孙效应。经分析得,在节流过程中,气体的焓值不断,定义Tp表示焓不变条件下,温度随压强HTHp的变化率,则根据1 可得:pHTpHTHpTH1VVVT pC pTT 1T pC p上式给出了焦汤系数与物态方程和热容的关系。对理想气体,10 ,说明理想气体在节流过程前后温度不变;,故T对实际气体,若T 1,则气体在节流过程前后温度降低,称为制冷区;若T 1,则气体在节流过程前后温
13、度升高,称为制温区。利用节流过程的降温作用可使气体降温液化(节流膨胀制冷效应)。气体的绝热膨胀过程,熵保持不变,则定义T表示绝热过程中温度随压强的变化率,同pS上可得,TSSTVVTp Sp TT pCpT pC p上式表明,在绝热条件下,随着气体体积膨胀和压强降低,气体的温度必然下降。 气体的绝热膨胀过程可用来使气体降温并液化(绝热膨胀制冷效应)。3. 热辐射的热力学理论受热的固体会辐射电磁波,称为热辐射。 一般情形下, 热辐射的强度和强度随频率的分布于辐射体的温度和性质都有关。当辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,与辐射体的其他特性无关,称为平衡辐射。考虑一个封
14、闭的空窖,窖壁保持一定的温度T 。窖壁将不断向空窖发射并吸收电磁波,当窖内辐射场与窖壁达到平衡后,二者具有相同的温度,显然空窖内的辐射就是平衡辐射。窖内的平衡辐射包含各种频率和沿着各个方向的电磁波,这些电磁波的振幅和相位是无规的。窖内平衡辐射是空间均匀和各项同性的,它的内能密度和内能密度按频率的分布只取决于温度。电磁理论中,关于辐射压强与辐射能量密度的关系为:p 1 u ;3由此根据热力学公式可得窖内平衡辐射的热力学函数为:uaT 4 .根据热力学基本方程,可得空窖辐射的熵为:S 4 aT 3V ,3由上式可知,可逆绝热过程中辐射场的熵不变,此时有T 3Vconst .若在窖壁上开一小孔,定义
15、单位时间通过小孔的单位面积辐射出的能量,称为辐射能量密度Ju .精彩文档实用标准文案描述辐射能量密度Ju 与辐射内能密度u 的关系称为斯特藩玻尔兹曼定律,即Ju1 cu1 caT 4T 4 ,称为斯特藩常量 .44其中基尔霍夫定律:cu ,T d,e d其中, e 称为物体对频率在4附近的电磁波的面辐射强度;为物体对频率在附近的辐射能量的吸收系数 .注:吸收系数为 1的物体称为绝对黑体,此时有e dc u ,T d .44. 磁介质的热力学磁介质中磁场强度和磁化强度发生改变时,外界所做的功为:W Vd 10 H 20VHdM ,2当热力学系统只包括介质而不包括磁场时,功的表达式只取第二项,即W
16、0 Hdm ,其中, mMV 是介质的总磁矩.忽略磁介质的体积变化,可得热力学基本方程为,dUTdS0Hdm ,类比于理想气体,即p0 H , V m .绝热去磁制冷:根据吉布斯函数dGSdT0mdH ,可得:TCV0 H ,HSCHT上式说明,在绝热条件下减小磁场,磁介质的温度降低,称为绝热去磁制冷效应.第三章 单元系的相变1. 热动平衡判据孤立系统的熵判据:S0 或 S0,2 S0 (熵增加原理) ;等温等容系统的自由能判据:F0 或 F0,2 F0 (等温等容系统自由能永不增加);等温等压系统的吉布斯函数判据:G0 或 G0,2G 0(等温等压系统的吉布斯函数永不增加) .均匀系统的热动
17、平衡条件:TT0 , pp0 ,即整个系统的温度和压强均匀 .平衡的稳定性条件:CV0,p0 ,V T注:考虑系统与子系统简的变化,若子系统的温度由于涨落或外界影响而升高,则子系统通过向系统其他部分传热使温度降低;同样, 若子系统的体积增大, 则子系统与系统其他部分的压强差会使子系统的体积减小,从而使系统的平衡处于稳定.2. 开系的热力学基本方程单元系是指化学上纯的物质系统,只含有一种化学组分. 如果系统不是均匀的,可以分为若干个均匀的部分,该系统称为复相系. 例如,冰、水和水蒸气共存构成一个单元三相系.物质的量发生变化的系统,其吉布斯函数的全微分可表示为:dGSdTVdpdn ,其中右方第三
18、项代表由于物质的量改变dn 引起的吉布斯函数的变化 .精彩文档实用标准文案G,表示在温度、 压强不变的条件下,增加 1mol 物质时引起的吉布斯函数的改定义nT , p变,成为化学势. 由于吉布斯函数是广延量,可得化学式与摩尔吉布斯函数的关系为:Gm T , p ;对单位物质的量系统的吉布斯函数可以写为:dSmdTVmdp .物质的量发生变化的系统的其他特性函数:关于关于S,V , nS, p, n的特性函数为内能,其全微分形式为:的特性函数为焓,其全微分形式为:dUTdS pdVdn ;dHTdS Vdpdn ;关于T ,V , n 的特性函数是自由能,其全微分形式为:dFSdTpdVdn
19、;关于T ,V , 的特性函数是巨热力势,其全微分形式为:dJSdTpdVnd .3. 单元复相系的平衡热力学条件考虑一个单元两相系,这个单元两相系构成一个孤立系统. 用和分别表示这两个相,用U ,V , n和 U,V , n分别表示两个相的内能,体积和物质的量.孤立系的总内能,总体积和总物质的量是恒定的,即UUconstVVconstnnconst设想系统发生一个虚变动,引起两相的熵变为:SSS11ppdn,dUTdVTTTTT若复相系处于平衡条件下,则熵为极大值,即S 0. 由此可得复相系的平衡热力学条件为:TTp pTTTT(热平衡条件)(力学平衡条件)(相变平衡条件)若复相系平衡条件未
20、能满足,则系统朝着熵增大的方向转变,即S 0 .4. 单元复相系的平衡性质精彩文档实用标准文案第六章 近独立粒子的最概然分布1. 粒子运动状态的经典描述设粒子的自由度为 r ,则粒子的运动状态可用广义坐标和广义动量来描述,粒子的能量是广义坐标和广义动量的函数,即q1, , qr ; p1, , pr .为了描述粒子的运动状态,用 q1 , qr ; p1 , pr这2r 变量构成一个2r 维的空间, 称为空间,粒子在某一时刻的运动状态就表示为空间中的一个点 .自由粒子自由粒子不受力的作用而在三维空间中做自由运动,自由度为3,它的能量就是它的动能,即1px2py2pz2 .2m线性谐振子粒子在线
21、性回复力 Fkx 的作用下做简谐运动,振动的圆频率为k.m对自由度为1 的线性谐振子,任意时刻的能量与粒子的位置和动量有关,即p21 m 2 x2.2m2转子粒子绕原点 O 做转动,它的能量就是它的动能,可用球坐标表示,即1 m r 2r 22r 2 sin 22.2若考虑到粒子到原点的距离不变r0 ,则能量表示为:1 m r 22r 2 sin 22;2引入与, 共轭的动量: pmr 2, pmr 2 sin2,可将转子的能量写为:1p 21p22Isin2其中, Imr 2 是转子相对于原点的转动惯量 .2. 粒子运动的量子描述量子力学的观点中,微观粒子满足波粒二象性,有p;k波粒二象性的
22、粒子满足不确定关系,即不能同时具有确定的坐标与动量,分别用q 和 p 表示坐标和动量的不确定度,则有qp h .在量子力学中, 微观粒子的运动状态称为量子态,量子态由一组量子数表征,这组量子数的数目等于粒子的自由度数 .线性谐振子圆频率为的线性谐振子,能量的可能值为:1, n 0,1,nn;2线性谐振子的自由度为1, n 是表征谐振子运动状态和能量的量子数.转子量子理论中,转子的能量为:l l 1 20,1,, l2I精彩文档实用标准文案量子理论中,转子的角动量是分立的,L2l l12 ,对一定的 l ,角动量在本征方向的投影Lz 只能取分立值:Lzm , m0,l ,转子的运动状态由l ,
23、m 两个量子数表征,能量只取决于量子数l ,因此转子的自由度为2l 1.自旋角动量基本粒子具有内禀的角动量,称为自旋角动量S ,其平方的数值等于S2S S12,其中 S 称为自旋量子数,可以是整数或半整数.S )及自旋角动量在本征方向的投影确定,自旋角动量的状态由自旋角动量的大小(自旋量子数其中投影的大小表示为:SzmS , mS0, ,S,因此,自旋角动量的自由度为2S 1.电子的自旋角动量和自旋磁矩电子的自旋磁矩与自旋角动量 S 之比为:Se ;m电子在外磁场中的能量为:HBeB .2m自由粒子根据“箱归一化”条件,设自由粒子处于边长为L 的正方体容器中,则自由粒子的三个动量分量 px ,
24、 py , pz 的可能值为:px2nx, nx0,1,Lpy2ny, ny0,1,;Lpz2nz ,nz0,1,L其中, nx ,ny , nz 为表征自由粒子运动状态的量子数.自由粒子能量的可能值为:1px2py2pz222 2 nx2ny2nz2,mL22m自由粒子的运动状态由量子数nx , ny , nz 表征,能量只取决于nx2ny2nz2 .若粒子处于宏观大小的容器中运动,这时要考虑在体积VL3内,在动量区间 pxdpx ,py dpy 和 pzdpz 内的自由粒子量子态数:dnxdn ydn zVV2dp ,23 dpx dpy dpz3ph再根据p2 2m ,可得处于能量区间d
25、 中的粒子状态数为:D d2 V2m 3 2 1 2 d .h33. 系统微观运动状态的描述系统的微观运动状态就是它的力学运动状态 . 全同粒子组成的系统就是由具有完全相同内禀属性(相同的质量、电荷、自旋等)的同类粒子组成的系统;精彩文档实用标准文案近独立粒子组成的系统是指系统中粒子之间相互作用很弱,系统的总能量等于各个粒子的能量之和,即NEi .i 1系统微观运动状态的经典描述设粒子的自由度为 r . 第 i 个粒子的力学运动状态由q1 , , qr ; p1 , , pr 这2r 个变量表示,考虑由 N 个粒子组成的系统,则系统微观运动状态的确定需要2Nr 个变量,即qi 1, qir ;
26、 pi1 , pir i1,2, N .单个粒子的运动状态可用空间中的一个点表示,则对于整个系统在某一时刻的运动状态可用空间中 N 点表示 . 如果交换两个代表点在空间中的位置, 相应的系统的运动状态是不同的.系统微观运动状态的量子描述微观粒子的全同性原理:全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以交换都不改变整个系统的微观运动状态.假设全同粒子可以分辨,确定由全同近独立粒子组成的系统的微观运动状态归结为确定每个粒子的个体量子态;若全同粒子不可分辨,则归结为确定每个量子态上的粒子数.自然界中的粒子分为两类:玻色子和费米子,其中自旋量子数是半整数的属于费米子,自旋量
27、子数是整数的属于玻色子 .a. 由费米子组成的系统称为费米系统,遵从泡利不相容原理,即在含有多个全同近独立费米子的系统中,一个个体量子态最多可容纳一个费米子;b. 由玻色子组成的系统称为玻色系统, 粒子是不可分辨的, 每个个体量子态可容纳的玻色子个数没有限制 .4. 分布与微观状态数以 l l1,2,表示粒子的能级,l 表示能级l 的简并度, N 个粒子在各能级的分布如下:能级:1, 2,l ,简并度:1,2, l , (经典粒子表示为:hr1 ,r2 , ,rl , )粒子数: a1 ,a2, al ,hh以符号al 表示系统的一个分布,它给出了系统中每个能级上的粒子数,为了确定系统的微观运
28、动状态,还要清楚al 个粒子如何占据能级l 的各个简并态的 .对于具有确定的 N , E,V 的系统,分布al满足约束条件:Nlal , Elal l对于玻尔兹曼系统,粒子是可分辨的, 且每个量子态上可容纳的粒子数没有限制,因此可以得到与分布 al 相应的系统的微观状态数为:M ,BN!al ,al !lll其中最概然分布为:all el ,其中 , 由约束条件 Nl el , El l el 确定 .ll对于玻色系统, 粒子是不可分辨的,每个量子态上可容纳的粒子数没有限制,因此可得与分布al 相应的系统微观状态数为:B, Elal1 ! ,lal !1 !l其中最概然分布为:精彩文档实用标准
29、文案lalel.1对于费米系统,粒子不可分辨,每个量子态上只能容纳一个粒子,因此可得与分布al 相应的微观运动状态数为:F ,Dl!,al !al !ll其中最概然分布为:all.el11或 al注:对于三种系统的最概然分布,若满足条件e1 ,则玻色分布和费米分布近似l于玻尔兹曼分布,这个条件称为经典极限条件或非简并性条件.考虑个体量子态问题或者平均粒子数问题,设处在能量s 的量子态 s 上的粒子数为f s ,则各种系统的最概然分布可表示为:玻尔兹曼系统:fs es玻色系统:fs1;se11费米系统:fs.es1第七章玻尔兹曼统计1. 热力学量的统计表达式定域系统和满足经典极限条件的玻色系统和
30、费米系统都满足玻尔兹曼分布.定义配分函数:Z1l e l(或积分形式Z1dq1dqrdp1 dpreq1 ,qr ; p1 , pr)lh0r则系统的热力学量的统计表达式如下:内能:由玻尔兹曼分布的内能表达式Ull el ,可得:lUNln Z1 .外界对系统的广义作用力Y 为:Yl alNln Z1 .lyy熵的统计表达式:dSNkdln Z1ln Z1SNk ln Z1ln Z1 .玻尔兹曼关系:2. 理想气体的状态方程利用统计力学求解热力学问题,首先要找到配分函数.S k ln理想气体的配分函数为:1p2p2p2Z1e 2 mxyzdxdydzdpxdpy dpzh33 22 mV h2
31、然后,再利用热力学量的统计表达式,得到相关热力学量:NNkTpln Z1VVV精彩文档实用标准文案3. 麦克斯韦分布律根据玻尔兹曼分布,可以推导出麦克斯韦分布律(气体分子的速度分布律).以理想气体为研究对象,气体分子为自由粒子. 在体积为V 的容器中,分布在动量区间dpxdpydpz 内的微观状态数为:Vh3 dpxdp ydpz ;则分布在 dpx dpydpz 内的分子数为:V3 ep2p 2p22 mxyzdpx dpydp zh而气体分子的总数为:p x2py2p z22 3NeVe V2 mkTe 2mdpxdpy dpzh3h2因此可得,动量在dpxdpy dpz 范围内的分子数为
32、:13 2p x2 py2p z2Ne2mdpxdpy dpz2 mkT以 nNdvxdvy dvz 内的分子数为:表示单位体积内的分子数,则在单位体积内,速度在Vm3 2m vx2 vy2 vz2f vx, vy , vz dvxdvy dvzne 2 kTdvxdvy dvz ,2 kT上式便是麦克斯韦速度分布律, 其中 f vx , vy , vz满足:f vx ,vy , vz dvx dvy vzn .利用速度空间的球坐标转化,可得速率分布律:m3 212fv dv 4 nmve 2kTv2dv ,2 kT分析速率分布律,可得以下特征数:最概然速率:vm2kT;m平均速率: v8kT;m方均根速率:vsv23kT .m.计算单位时间内碰到单位面积器壁上的分子数,称为碰壁数以 ddAdt 表示在 dt 时间内碰到 dA 面积上,速度在dvxdvydvz 范围内的分子数. 这分子数就是位于以 dA 为底、以 v vx, vy ,vz 为轴线、以 vxdt 为高的柱体内,速度在dvxdvydvz 范围内的分子数 . 所以有:d dAdtfdvxdv ydvzvx dAdt故可得单位时间内碰到单位面积上的分子数为:dvydvz0fvxdvx nkT,2 m也可以表示为:1nv4精彩文档实用标准文案4. 能均分定理能均分定理:对于处在温度T 的平衡状态的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度租赁合同-办公设备2篇
- 2024年产权保证及不动产抵押权益协议版B版
- 江南大学《法理学》2023-2024学年第一学期期末试卷
- 二零二四年度版权质押合同著作权质权设立与行使3篇
- 2024年国际邮政快递服务合同
- 2024年吊车短期租赁标准协议稿版B版
- 佳木斯大学《成本会计》2021-2022学年第一学期期末试卷
- 2024保密协议范本汇编
- 暨南大学《大数据分析的Python基础》2021-2022学年第一学期期末试卷
- 济宁学院《歌曲伴奏与弹唱》2021-2022学年第一学期期末试卷
- 法律顾问服务职业发展研究报告
- 2023年辽宁省新高考历史试卷(含解析)
- 建筑扬尘环保税培训
- 中考英语-句型转换解题方法(课堂PPT)
- 数字摄影技术与艺术中国大学mooc课后章节答案期末考试题库2023年
- 2023年叉车证特种设备作业N1证理论考试题库及答案
- 《药品储存与养护》期末考试习题库(含答案)
- 2023学年完整公开课版《母鸡的秘密》
- 血管瘤-教学讲解课件
- 5G基站建设与维护高职全套PPT完整教学课件
- 四位数乘四位数乘法题500道
评论
0/150
提交评论