材料成型及控制工程 外文翻译 外文文献 英文文献 在模拟人体体液中磷酸钙涂层激光消融_第1页
材料成型及控制工程 外文翻译 外文文献 英文文献 在模拟人体体液中磷酸钙涂层激光消融_第2页
材料成型及控制工程 外文翻译 外文文献 英文文献 在模拟人体体液中磷酸钙涂层激光消融_第3页
材料成型及控制工程 外文翻译 外文文献 英文文献 在模拟人体体液中磷酸钙涂层激光消融_第4页
材料成型及控制工程 外文翻译 外文文献 英文文献 在模拟人体体液中磷酸钙涂层激光消融_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、外文出处:Clries, L., Fernndez-Pradas, J. M., & Morenza, J. L. (2000). Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation.Biomaterials,21, 18, 18611865.在模拟人体体液中磷酸钙涂层激光消融 L. Cleries*, J.M. FernaH. Morenza 德国巴塞罗那大学,西班牙1999年七月二十八日-2000年2月文摘:三种类型的磷酸钙涂层基质,在钛合金激光烧蚀技术规定提存,

2、沉浸在一个模拟的身体# uid为了确定条件下他们的行为类似于人的血浆。羟基磷灰石涂层也也非晶态磷酸钙涂层和a-tricalcium磷酸盐做溶解阶段b-tricalcium磷酸盐的涂料有细微的一个阶段稍微瓦解。一个apatitic阶段降水量偏爱在羟基磷灰石涂层的涂料磷酸b-tricalcium上有细微的一个阶段。在钛合金基体上也有降水参考,但在大感应时代。然而,在非晶态磷酸钙涂层不沉淀形成。科学出版社(2000保留所有权利。关键词:磷酸钙,脉冲激光沉积,SBF1 介绍激光消融技术用于沉积磷酸钙涂层金属基体上,将用作植体骨重建。用这个技术,磷酸钙涂层量身定做阶段和结构也成功地研制生产了1,2和溶解

3、特性鉴定海洋条件。然而,真正的身体条件# uid饱和对羟基磷灰石的阶段,这是钙离子的浓度高于均衡的这个阶段。因而,这就很有趣也测试条件磷酸钙涂料接近体内的情况,以了解其完整性,在这些条件及其催化反应性质表面沉淀过程。因此,非晶态磷酸钙涂层(ACP),羟基磷灰石(HA)涂层,涂层中的一个阶段b-tricalcium磷酸盐较小(ba-TCP)积下激光烧蚀是沉浸在饱和溶液为迪!时间、不同的结构性演变进行了测定。饱和溶液的使用的是身体uid(SBF模拟#),解决了其离子浓度、酸碱度几乎等于那些人类血浆5。该解决方案也是一个利用在仿生(沉淀)工艺生产磷灰石层在溶胶凝胶活性钛基体。2 实验模拟身体化学溶解

4、试剂级严格依照以下的顺序,除氢钠,NaHCO3:)3,K2HPO4 H2O,MgCl2)6 H2O,氯化钙和Na2SO4)2 H2O,在去离子水。uid是#浸pH值7.4 !感染在预热373 C / f的与tris-hydroxymethyl-aminomethane盐酸。无机成分的SBF模拟人体血浆,显示在表1。无沉淀过程中得到了# uid准备。ba-TCP镀层的沉积,到ACP钛合金(Ti 4 V)6铝基体激光消融公顷,一个准分子激光在248海里裸露钛合金基体与triclorethylene脱脂的超声波洗澡、丙酮、乙醇、进行测定。细节的制备方法和性能的涂层。图1 .扫描电子显微图(a)为幸福

5、的涂料,(b)(c)ba-TCP涂层、涂料、机场核心计划后,8天浸(d)在钛合金基体浸泡后28天。选择在这一研究中,可以发现,在以往文献1 4。所有的涂层厚度大约有1激光束。每一个例子,占地1平方厘米,都是24毫升的SBF溶液分成停止瓶入预热373 C / f烤箱温度,在不同的时期嘀!:1、4、8、28天。在这一点上,每一个代表样本被小心地用蒸馏水清洗、空气干燥、加权,具有x射线嘀! raction、拉曼散射仪和扫描电子显微镜(SEM)。3.结果3.1 哈涂料扫描电镜显微图8天,描绘出后浸在图1中,结果表明,在一个柱状涂层结构致密,沉淀层相当出现。这一层是不强烈坚持哈涂料,因为它潜在的清洁分离

6、哈涂料在某些地区,underexposing原哈其表面看起来并没有降低。射线嘀! raction光谱之前和之后的8天在SBF都显示在图2。最初,除了光谱包括基体的山峰,只有哈峰后不降低8天在解决方案。它仍然在第八天,一个宽带的幽灵围绕323公顷的山峰,叠加的附加峰点是25.93,这归功于一个non-well磷灰石结晶7有首选(0 0 2)方向。一个具有代表性的拉曼光谱在8天(图3)显示962厘米 1高峰的一个相对小哈涂料、模糊、肩,几乎wavenumbers这也是对低的原因non-well磷灰石结晶结构8。质量的提高coating-substrate系统,表2、表显示,沉淀的增长。3.2 ba

7、-TCP涂料扫描电镜显微图。结果表明,1 b的形成沉淀在第八天,一件厚的。有些地方,这已经underexposing沉淀分离,上漆的表面,这似乎并没有是降低。射线嘀! raction高峰归因于小a-TCP微微减少后b-TCP浸泡,那些不会改变(图2 b)。此外,宽广的乐团集中在32和25.93次高峰,归功于一个non-well磷灰石结晶结构有首选(0 0 2)定位,出现。代表“nal拉曼光谱(图3 b),展示了一个宽广乐队,包含TCP山峰在947和972厘米 1,但存在的一个中间峰值大约960厘米 1建议也存在non-well磷灰石结晶结构。第4的质量变化和8天期间,它也在表2、表相似的结果,

8、表明早期的饱和度降水过程。 ACP涂料在扫描电镜照片(图1 c)没有实质性改变被检测到,既不结算或沉淀,自从原来的形态和液滴保持。ACP涂料不显示任何x射线嘀! raction峰以外的8天的浸后基质(图2 c)。代表“nal拉曼光谱(图3 c)只有一个宽广的乐团为中心,对950厘米 1特非晶质结构6。表2 rms,欺诈” 光秃秃的钛合金基体扫描电镜图片显示了沉淀后发现28天(图1 d)。射线嘀! ractionspectrum(图2 d)表示,它也不结晶结构以及磷灰石与(0 0 2)优先取向。一个宽广的乐团集中到960厘米 1在其代表”nal拉曼光谱(图3 d)也暗示着有一个非好沉淀结晶磷灰石

9、结构。表2显示大众对于这样一笔样品吸收。4 讨论在以前的研究中3同一类型的磷酸钙涂层用于目前的工作Ca-free海洋测试条件,发现哈涂料,a-TCP稳定阶段ba-TCP涂料完全溶解,留下一个微孔涂层ACP涂料完全溶解。在饱和的条件下,既不哈或SBF b-TCP阶段的ba-TCP涂料在两种涂料溶解沉淀是一个发现。事实上,这些阶段不溶而不是一个意外的结果如果我们考虑,这种方案是饱和的钙磷酸盐嘀!不同,不同程度的过饱和嘀!代表不同的消极嘀!吉布斯自由能量(比如,! 7.94公顷,kJ /水解为kJ ! 3.72 /水解为b-TCP9)。沉淀,形成了有一个non-well磷灰石结晶结构与(0 0 2)

10、优先取向。事实上,磷灰石是最thermodinamically青睐相沉淀(具有最高价值负吉布斯自由能),选择(0 0 2)取向是一个通用的“连接在其他研究第十条、第十一条。我们已经发现他们是为了沉淀率的哈Ti ba-TCP的项目。沉淀是的快到ba-TCP然后形成涂层比到哈涂料。Radin吴昱。12在SBF溶液报道的a-TCP相溶解在感应时间发生,降水说,这个最初阶段,因而导致过饱和溶解帮助沉淀。尹衍梁吴昱。13也同样表明:哈水晶结构不是关键性的成核过程。下面的解释,解散a-TCP阶段的ba-TCP涂料可支持的non-well沉淀结晶磷灰石相位该涂料在为哈涂料将延迟没有解散这沉淀。在空荡荡的钛合

11、金沉淀结晶阶段的non-well磷灰石观测虽然对降水变化的诱导时间比涂层和幸福是类似于那些在文献中报道的。Ducheyne吴昱。也报道说,在SBF溶液沉淀到每亩比到早发生钛盘。考虑到既哈涂料不是钛合金做释放到解决的钙、磷离子3,4降水可以帮助,这将会建议在这种情况下水晶结构确实是重要的种种嘀! erences在成核速率。值得一提的是,没有解散的涂料和降水过程ACP在它的表面上。矛盾的报道已经被发现对于行为在SBF溶液得到ACP涂料采用射频磁控溅射技术:Wolke吴昱。16说这些浸涂料在机场核心计划维持1864 l Cle %国家吴昱。/生物材料21(2000)1861 1865,在一些地方磷酸

12、钙沉淀被发现。然而,Yoshinari吴昱。观察解散ACP涂磁盘一天之内不沉淀的磷酸钙阶段。他们已把这种嘀!降水过程的比率的变化对样品溶液体积区、钙/磷比例,晶粒尺寸的涂料,和杂质。我们没有解散ACP涂料都可以解释是基于SBF溶液饱和就可以对这个特殊的机场核心计划阶段。这饱和度计算不能轻易的非晶磷酸钙阶段,因为它在很大程度上取决于其钙/磷比例可# uctuate。没有沉淀到ACP涂料即使在钛合金基体沉淀是一个发现。这是令人惊讶,因为在没有解散、ACP涂料应该提供一个更好的基底的磷灰石晶核钛合金基体相比,因为它已经中钙和磷酸盐离子在它的结构。因此,其它因素的介入机制的形成沉淀,除了存在一种磷酸钙

13、的表面或者中钙和磷酸盐的释放,要考虑。5 结论房委会涂料准分子激光烧蚀积下的稳定性欺诈”有效值饱和条件对溶解作用。机场核心计划层与b-TCP阶段的ba-TCP涂料也稳定在目前这种情况下。哈,ba-TCP涂料的支持apatitic降水的早期阶段,使用一个(0 0 2)优先取向。在钛合金基体上也有降水参考,但在大感应时代。然而,在非晶态磷酸钙涂层不沉淀形成。致谢:这项工作是一项科研项目的一部分的“nanced由西班牙政府DGESIC(项目MAT98 -C02- - - 0334),西班牙政府的DGR调查。参考资料:1FernaHndez-Pradas JM、密集语言接触教学法ries L、Sard

14、in G,Morenza杰。同时对羟基磷灰石沉积瘦”由准分子激光烧蚀。薄膜在1998;317:393 6。2FernaHndez-Pradas JM、密集语言接触教学法ries L、Sardin G,Morenza杰,羟基磷灰石涂层脉冲激光沉积增加用一束355海里的波长。圣人J.中国糖尿病杂志1999;14:4715 9。3密集语言接触教学法ries L、FernaHndez-Pradas JM、Sardin G,Morenza杰。解散的行为得到磷酸钙涂层激光烧蚀。生物材料19:1483 7。1998;4密集语言接触教学法ries L、FernaHndez-Pradas JM、Sardin G

15、,Morenza杰。应用结构表征溶解实验脉冲laser-deposited磷酸钙涂层。生物材料20:1401 5。1999;5Kokubo吨,Kushitani H,Sakka年代,Kitsugi T,T Yamamuro方案能够重现体内表面生物活性的变化A-W3微晶玻璃。粒状手外科杂志1990;24:721 4。6Tanahashi米,T,T,Kokubo中村桂太郎Y,长野超微结构研究的M磷灰石层是由一仿生过程及其与骨。生物材料1996;17:47 51人。7通W,X、Z,张王建民杨,风J,曹Y,吴昱。研究了奥氏体中的扩散最大嘀!在x射线嘀! raction模式plasma-sprayed羟

16、基磷灰石涂层。J手外科杂志1998;成熟期40:407 13岁。8Weinlaender米,Beumer J,Kenney兄,3 PK,吉拉摩伊村f探针研究磷酸钙的三个阶段# ame-sprayed商用等离子体羟基磷灰石涂层牙科植体- 1。科学杂志:J灵便灵便1992;3:397 401。9(钾、Takagi年代,周杰伦LC(Y,Eanes泥塘主编,磷酸钙骨水泥可注射性相关行为的模拟血浆体外测试。1994;26 凹痕成熟期32。10Maruno年代,禁止年代,岩田透漏自己吃烤土豆烫H,H吊机磷酸钙沉淀在水面上的HA-G-Ti复合在生理条件。J手外科杂志1994;成熟期28:65 71。温11,

17、Wolke JGC乙肝,德小Q,Wijn,刘崔FZ,德Groot k .快速沉淀磷酸钙层诱导化学治疗简单钛。生物材料18:1471 8。1997;12,Ducheyne Radin p . e锶磷酸钙陶瓷的!等组成和结构对体外的行为。二。沉淀。J手外科杂志1993;成熟期27:35 45人。13J.中国学术史,刘问,Wolke JGC,张X,德Groot k .的形成和特性plasma-sprayed磷灰石层羟基磷灰石涂层在模拟身体# uid。生物材料18:1027 35岁。1997;14金嗯,Miyaji F,Kokubo T,T,制备具有生物活性的中村钛及其合金通过简单的化学表面处理。J手

18、外科杂志1996;成熟期32:409 17岁。15Ducheyne磷、Radin R(磷酸钙沉淀率在金属、陶瓷、生物活性的关系。在Ducheyne磷、Kokubo:T,货车Blitterswijk钙、编辑。Bone-bonding生医材料等。Leiderdorp:里德医疗通讯,1992.便士。213 8。16Wolke JGC Waerden JPCM寒冬里,德Groot钾、姚森JA。射频磁控管的稳定性状况下磷酸钙涂层正加载条件。生物材料18:483 8。1997;17Yoshinari米,Hayakawa 4吨,Wolke JGC钾、简森,是的。在#影响力的快速加热处理射频磁控-红外辐射涂料

19、calcium-phosphate气急败坏地说。J手外科杂志1997;成熟期37:60 7。外文出处:Clries, L., Fernndez-Pradas, J. M., & Morenza, J. L. (2000). Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation.Biomaterials,21, 18, 18611865.Behavior in simulated body fluid of calcium phosphate coatings obtai

20、ned by laser ablationL. Cleries*, J.M. FernaHndez-Pradas, J.L. MorenzaDepartament de Fn&sica Aplicada i O ptica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, SpainReceived 28 July 1999; accepted 20 February 2000AbstractThree types of calcium phosphate coatings onto titanium alloy

21、 substrates, deposited by the laser ablation technique, were immersed in a simulated body #uid in order to determine their behavior in conditions similar to the human blood plasma. Neither the hydroxyapatite coating nor the amorphous calcium phosphate coating do dissolve and the a-tricalcium phospha

22、te phase of the coating of b-tricalcium phosphate with minor a phase slightly dissolves. Precipitation of an apatitic phase is favored onto the hydroxyapatite coating and onto the coating of b-tricalcium phosphate with minor a phase. Onto the titanium alloy substrate reference there is also precipit

23、ation but at larger induction times. However, onto the amorphous calcium phosphate coating no precipitate is formed. ( 2000 Elsevier Science Ltd. All rights reserved. Keywords: Calcium phosphate; HA; Pulsed laser deposition; SBF1. IntroductionLaser ablation is a technique employed for the deposition

24、 of calcium phosphate coatings onto metallic substrates that will be used as implants for bone reconstruction. With this technique, calcium phosphate coatings with tailored phases and structures have successfully been produced 1,2 and their dissolution properties in undersaturated conditions have be

25、en assessed 3,4.However, the real body #uid conditions are saturated with respect to the hydroxyapatite phase, that is, the concentration of calcium ions is higher than the one in equilibrium with this phase. Consequently, it is interesting to also test the calcium phosphate coatings in conditions c

26、loser to the in vivo situation, in order to know their integrity in these conditions and the catalyticreactive properties of their surfaces towards precipitation processes.Therefore, amorphous calcium phosphate coatings (ACP), hydroxyapatite coatings (HA), and coatings of b-tricalcium phosphate with

27、 minor a phase (ba-TCP) deposited by laser ablation were immersed in a saturated solution for di!erent time periods and the evolution of their constitutive properties was determined. The saturated solution used was the simulated body #uid (SBF), a solution whose ion concentrations and pH are almost

28、equal to those of human blood plasma 5. This solution is also the one utilized in the biomimetic (precipitation) process for the production of apatite layers onto the solgel activated titanium substrates 6.2. ExperimentalThe simulated body #uid 5 was prepared by dissolving reagent grade chemicals st

29、rictly in the following order: NaCl, NaHCO3, KCl, K2HPO4 )3H2O, MgCl2) 6H2O, CaCl2) 2H2O, and Na2SO4 into deionized water. The #uid was bu!ered at pH7.4 at 373C with tris-hydroxymethyl-aminomethane and hydrochloric acid. The inorganic composition of SBF emulates that of human blood plasma, as shown

30、in Table 1. No precipitation was observed during #uid preparation. Coatings of HA, ba-TCP, and ACP deposited onto titanium alloy (Ti6Al4V) substrates by laser ablation of HA with an excimer laser at 248 nm and bare titanium alloy substrates degreased in ultrasonic baths with triclorethylene, acetone

31、 and ethanol, were used. Details on the preparation and characterization of the coatingsFig. 1. Scanning electron micrographs for (a) the HA coating, (b) the ba-TCP coating, (c) the ACP coating, after 8 days immersion, and (d) the titanium alloy substrate after 28 days immersion.selected for this st

32、udy, can be found in previous papers 14. All the coatings had a thickness around 1 lm. Each sample, with an area of 1 cm2, was soaked in 24 ml of the SBF solution into separate stopped vials at 373C in a thermostatic oven, for di!erent periods: 1, 4, 8, and 28 days. At that point, each representativ

33、e sample was carefully washed with distilled water, air dried, weighted and characterized by X-ray di!raction, Raman spectroscopy and scanning electron microscopy (SEM).3. Results3.1. HA coatingThe SEM micrograph after 8 days immersion, depicted in Fig. 1a, shows that over the columnar coating struc

34、ture, a quite dense precipitated layer appears. This layer is not strongly adhered to the underlying HA coating since it cleanly detaches from the HA coating in certain areas, underexposing the original HA surface which does not seem to have degraded. The X-ray di!raction spectra before and after 8

35、days in SBF are shown in Fig. 2a. The initial spectrum contains, apart from the substrate peaks,only HA peaks that do not diminish after 8 days in solution. It is distinguishable at day 8 that the apparition of a broad band centered around 323 superimposed to 3, which are attributed to a non-well cr

36、ystallized apatite 7 with a preferred (0 0 2) orientation. A representative Raman spectrum after 8 days (Fig. 3a) shows the 962 cm1 peak of the HA coating and a relatively small, almost indistinct, shoulder towards lower wavenumbers that is also attributable to a non-well crystallized apatite struct

37、ure 8. The gains in mass of the coating-substrate system, tabulated in Table 2, indicate the growth of the precipitate with time.3.2. ba-TCP coatingThe SEM micrograph in Fig. 1b shows that there is the formation of a thick precipitate at day 8. There are some parts where this precipitate has detache

38、d, underexposing the coating surface, which does not seem to be that degraded. The X-ray di!raction peaks attributed to the minor a-TCP slightly diminish after immersion and those of b-TCP do not change (Fig. 2b). Additionally, the 3 peak, attributed to a non-well crystallized apatite structure with

39、 a preferred (0 0 2) orientation, appear. The representative nal Raman spectrum (Fig. 3b) shows a broadband that contains the TCP peaks at 947 and 972 cm1, but the existence of an intermediate peak at around 960 cm1 suggests also the presence of a non-well crystallized apatite structure. The mass ch

40、anges for the 4 and 8 day period, which are also tabulated in Table 2, are similar, indicating the early saturation of the precipitation process.3.3. ACP coatingIn the SEM image (Fig. 1c) no substantial change is detected, neither dissolution nor precipitation, since the original morphology with dro

41、plets is maintained. The ACP coating does not show any X-ray di!raction peak other than the substrate ones after 8 days immersion (Fig. 2c). The representative nal Raman spectrum (Fig. 3c) has only a broad band which is centered towards 950 cm1, characteristic of an amorphous structure 6. Table 2 co

42、nrms that 3.4. Bare titanium alloy substrateThe SEM image shows the precipitate found after 28 days (Fig. 1d). The X-ray di!ractionspectrum (Fig. 2d) indicates that it has also a non well crystallized apatite structure with a (0 0 2) preferred orientation. A broad band centered towards 960 cm1 in it

43、s representative nal Raman spectrum (Fig. 3d) also suggests that the precipitate has a non well crystallized apatite structure. Table 2 shows the mass uptake for this sample.4. DiscussionIn a previous study 3 the same type of calcium phosphate coatings used in the present work were tested in Ca-free

44、 undersaturated conditions, and it was found that the HA coatings were stable, that the a-TCP phase in the ba-TCP coatings completely dissolved leaving a microporous coating and that the ACP coatings completely dissolved.In the saturated conditions of the SBF neither the HA or the b-TCP phase of the

45、 ba-TCP coatings do dissolve and on both coatings a precipitate is found. The fact that these phases do not dissolve is not an unexpected result if we take into account that this solution is saturated for the di!erent calcium phosphates, with di!erent degrees of supersaturation represented by di!ere

46、nt negative Gibbs free energies (for instance,!7.94 kJ/mol for HA and!3.72 kJ/mol for b-TCP 9). The precipitate that is formed has a non-well crystallized apatite structure with a (0 0 2) preferred orientation. Indeed, apatite is the most thermodinamically favored phase to precipitate (has the highe

47、st negative Gibbs free energy value), and the preferred (0 0 2) orientation is a common nding among other studies 10,11.We have found that the precipitation rate is in the order ba-TCP HATi ACP. The precipitate isthen formed faster onto the ba-TCP coating than onto the HA coating. Radin et al. 12 re

48、ported that in a SBF solution the a-TCP phase dissolved during an induction time before precipitation took place and suggested that it was this initial phase dissolution leading to supersaturation that consequently helped precipitation. Weng et al. 13 have also suggested that the HA crystalline stru

49、cture is not critical in the nucleation process. Following these interpretations, the dissolution of the a-TCP phase of the ba-TCP coating could favor the precipitation of the non-well crystallized apatite phase on this coating while for the HA coating the absence of dissolution would delay this pre

50、cipitation.Onto the bare titanium alloy the precipitation of the non-well crystallized apatite phase is observed although the induction time towards precipitation is larger than for the HA coating, and is similar to those reported in the literature 14. Ducheyne et al. 15 have also reported that prec

51、ipitation in a SBF solution occurs earlier onto HA than onto titanium disks. Taking into account that neither the HA coating not the titanium alloy do release into the solution the calcium or phosphate ions 3,4 that could help precipitation, this would suggest that in this case the crystalline struc

52、ture is indeed important in dictating the di!erences in the rate of nucleation.Remarkably, there is no dissolution of the ACP coating nor precipitation processes onto its surface. Contradictory reports have been found regarding the behavior in a SBF solution of ACP coatings obtained by RF magnetron

53、sputtering: Wolke et al. 16 reported that these ACP coatings during immersion were maintained 1864 L. Cle% ries et al. / Biomaterials 21 (2000) 18611865 and in some areas a calcium phosphate precipitate was found. However, Yoshinari et al. 17 observed dissolution of ACP coated disks within one day w

54、ithout precipitation of a calcium phosphate phase. They attributed this di!erence in precipitation processes to the variations on the ratio of solution volume to sample area, the Ca/P ratio, the grain size of the coating, and the impurities. The absence of dissolution for our ACP coating could be ex

55、plained on the basis that the SBF solution could be saturated with respect to this particular ACP phase. This degree of saturation cannot be easily calculated for amorphous calcium phosphate phases since it largely depends on their Ca/P ratio which can #uctuate. There is no precipitation onto the AC

56、P coating even when onto the titanium alloy substrate a precipitate is found. This is quite surprising since, in the absence of dissolution, the ACP coating should provide a better substrate for the nucleation of apatite compared to the titanium alloy substrate since it already has calcium and phosp

57、hate ions in its structure. Therefore, other factors intervening in the mechanisms of the formation of this precipitate, apart from the existence of a calcium phosphate surface or calcium and phosphate release, should be considered.5. ConclusionThe HA coating deposited by excimer laser ablation conr

58、ms its stability in saturated conditions towards dissolution. The ACP coating and the b-TCP phase of the ba-TCP coating are also stable under these conditions. The HA and ba-TCP coatings favor earlier the precipitation of an apatitic phase with a (0 0 2) preferred orientation. Onto the titanium alloy substrate reference there is also precipitation but at larger induction times. However, onto the amorphous calcium phosphate coating no precipitate is fo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论