波形发生器设计_第1页
波形发生器设计_第2页
波形发生器设计_第3页
波形发生器设计_第4页
波形发生器设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正 文1 选题背景波形发生器又名信号源,广泛应用于电子电路、自动控制和科学试验等领域。雷达、通信、宇航、遥控遥测技术和电子系统等领域都随处可见波形发生器的应用。如今作为电子系统心脏的信号源的性能很大程度上决定了电子设备和系统的性能的提高,因此随着电子技术的不断发展,现今对信号源的频率稳定度、频谱纯度和频率范围以及信号波形的形状提出越来越高的挑战。1.1指导思想 利用NE555构成多谐振荡器产生方波,根据LM324输出的锯齿波分别通入低通滤波器和高通滤波器就可以输出正弦波、正弦波。1.2 方案论证 方案一:使用NE555芯片构成多谐振荡器,输出方波,通过锯齿波发生电路产生锯齿波,然后通过一个的低

2、通滤波器,通过滤波产生一次,8KHz到10KHz的正弦波,然后再让锯齿波通过一个24KHz30KHz的带通滤波器,输出三次正弦波。其中滤出三次谐波的理论依据是,由于锯齿波是一个关于的周期函数,并且满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。 方案二:使用功放构成文森桥式震荡电路,产生出8KHz10KHz的正弦波。接着是用NE555芯片,搭建出施密特触发电路,产生脉冲波输出;将脉冲波分别输入一个的低通滤波器和24KHz30KHz的带通滤波器电路中,产生一次和三次正弦波。 最初方案设计的大体思路在方案一和方案二之间犹豫不决

3、,于是将两个电路的大体电路都进行了简单的设计,发现方案二存在很多的问题很难解决。 问题一:如果使用文森桥式震荡器产生正弦波,改变震荡频率就需要改变RC常数,要同时改变两个R(在实际电路中,同时改变两个电容的值是很复杂的,而且这样也无法得到一个8KHZ10KHz的连续的频率),需要双滑动变阻器并且要保证滑动变阻器改变的值完全相同,有一定困难。 问题二:NE555芯片搭建出来的是一个简单的施密特触发器,输入正弦波之后,输出的脉冲波的占空比是不可以调整的,不满足实验要求的占空比可调的条件。要是施密特触发器产生的脉冲波的占空比可调会是该电路进一步复杂化。 问题三:LM324芯片的功放不够,由于有负载电

4、阻的限制,输出波形的峰峰值不能简单的通过电阻的分压来实现。鉴于方案二存在的问题能以解决,我们就确定选择方案一的整体思路进行方案的设计。1.3 基本设计任务 用555 定时器和四运放LM324 设计并制作一个频率可变的、能够同时输出脉冲波、锯齿波、正弦波I 和正弦波II 的波形产生电路。 (1)四通道同时输出。每通道输出脉冲波、锯齿波、正弦波I 和正弦波II 中的一种波形,通道负载电阻均为600 欧姆。 (2)四通道输出波形的频率关系为1:1:1:3(三次谐波)。脉冲波、锯齿波、正弦波I 输出频率范围为8kHz10kHz,正弦波II 的输出频率范围为24kHz30kHz。输出波形无明显失真。 (

5、3)频率误差不大于10%,通带内输出电压幅度峰峰值误差不大于5%。2 电路设计2.1工作原理NE555构成了多谐振荡器,内部可以产生脉冲波和锯齿波,将锯齿波经过LM324一个比例运算放大电路,就可以得到所需的锯齿波。然后让锯齿波输出分别通入由LM324组成的低通滤波器电路和高通滤波器电路,就可得到一次正弦波和二次正弦波。3 各主要电路及部件工作原理3.1脉冲波产生电路 脉冲波由NE555芯片搭建的多稳态谐振器振动产生,频率可调,为。参考NE555芯片使用手册可知,芯片输出波形的峰峰值为10V左右。使用Multisim仿真的脉冲波产生电路如下图1所示。 图1 脉冲波发生电路利用软件进行波形的仿真

6、,得到脉冲波的图形如图2所示 图2 脉冲波仿真波形3.2锯齿波发生电路 在锯齿波发生电路的设计中,原始方案是采用教材中的锯齿波发生电路,是通过调整积分电路的正向和反向时间常数的不同,对输入信号的脉冲波进行积分产生锯齿波(该电路是需要二极管的)。开始是按照这个思路进行仿真的。因为要同时调整正向和反向积分的时间常数,于是我们就想可以在调整脉冲波的输出频率的时候,只改变高电平或者低电平的持续时间,然后在锯齿波发生电路中选取合适的电容值,然后就可以讲正向或者反向的电阻值固定,只改变另一方向的电阻值就可以了。见图3是该方案的仿真电路 图3 锯齿波产生电路 见图1,是用NE555产生出脉冲波,然后通过锯齿

7、波产生电路,这里仿真没有选择功放为LM324,未考虑的负载电阻以及输出的峰峰值。脉冲波和锯齿波发生电路的参数取值如下根据NE555芯片的使用手册,有以下有用公式:根据以上的公式,就可以计算出理论上的各种参数: 在对锯齿波进行仿真的时候,发现波形有些失真,上网查阅资料后得知要是常数跟脉冲波的时间相匹配才行。去锯齿波发生电路的参数选择及计算过程如下:如图1所示,为一个电阻和一个电位器组成,取仿真结果见图4的锯齿波。图4 锯齿波仿真波形从图4的波形中算出锯齿波的峰峰值为 由于要求负载电阻为,不能直接进行分压来控制峰峰值为,再用功放来满足峰峰值的要求的话,LM324的四功放无法满足整个电路的需求,因此

8、这种锯齿波的单元电路就被放弃了,需要进行改进。查阅资料发现了在NE555芯片构成的脉冲波发生电路中就有锯齿波,只需要在该处输出,然后调整峰峰值便可以得到要求的锯齿波。改进后的电路仿真图如下图5。 图5 改进后的脉冲波和锯齿波发生电路 改进后的电路对脉冲波发生电路的参数也进行了调整,让脉冲波的占空比接近一半。锯齿波发生电路是一个反向比例运算电路,由公式 参数的选择如下: 对该电路进行软件仿真得到理论上的锯齿波波形,见图6。图中另一个波形是NE555芯片的输出波形。图6 改进电路后的脉冲波和锯齿波的仿真波形 得到的锯齿波的峰峰值约为,频率与NE555芯片产生的脉冲波频率保持一致,满足实验要求,就完

9、成了锯齿波波形发生电路的理论设计。3.3正弦波发生电路 在电路的设计初期,一次正弦波,也就是的正弦波发生电路是采用的是截止频率为的二阶压控电压源低通滤波器,电路图见下图 图7 二阶压控电压源低通滤波器原理图 根据截至频率,查图确定电容的标称值图8 二阶压控电压源低通滤波电路参数选取参考图取 查表确定电容的值,以及时对应的电阻。1246810 1.4221.1260.8240.6170.5210.4625.3992.2501.5372.0512.4292.742开路6.7523.1483.2033.3723.56006.7529.44416.01223.60232.038表1 -1 二阶压控电压

10、源低通滤波器参数表因为低通滤波器的输入直接从锯齿波发生电路的输出端引入,峰峰值为,所以将上列阻值乘以计算出来的值进行电路仿真后电路图如图 图9 二阶压控电压源低通滤波器仿真电路 图9下部分就是二阶压控电压源低通滤波器电路(一次正弦波产生电路),蓝色的线分别是滤波器的输入和输出端,其中输入端是锯齿波发生电路的输出端,即输入峰峰值为的锯齿波。 仿真的波形如下图9所示图10 一次正弦波仿真波形 图中,上部分波形是输入的峰峰值为的锯齿波,下部分是一次正弦波,频率与锯齿波保持一致,但是峰峰值没有达到实验要求的,有所衰减。于是对电路的参数重新选择。 修改后的仿真电路图如下 图11 改进后的二阶压控电压源低

11、通滤波电路再次进行波形的仿真,结果如下图:图12 改进后的一次正弦波仿真波形 从仿真结果可以发现,波形的峰峰值又超过了,对电路进行理论分析,发现因为使用的单电源,偏置电阻影响了原本与地直接只有的的阻值,串上了偏置电阻。根据二阶压控电压源电路的放大倍数公式进行电阻的调整。取得到的满足条件的峰峰值为的一次正弦波。上面的波形是从锯齿波发生电路输出的锯齿波,下面的是经过低通滤波器之后产生的一次正弦波波形,两个波形的峰峰值单位都是,可知波形在的仿真结果都满足实验要求。该部分的仿真设计就完成了。图13 一次正弦波仿真波形 3.4 二次正弦波发生电路 二次正弦波的电路的设计思路是通过一个通带为的带通滤波器。

12、设计该滤波器是采用的无限增益多路反馈(MFB)电路。该电路的电路图如下所示。 图14 无限增益多路反馈电路原理图该电路有以下公式方便参数选择为了使通带更加平坦,应该尽量使值大,查二阶无限增益多路反馈带通滤波器设计用表归一化电路元件值电路元件增益1246810510表1-2 无限增益多路反馈电路参数选择表参数选择如下:仿真的电路图如下图所示: 图15 无限增益多路反馈电路(带通滤波器) 对电路进行波形仿真时发现,当接入一个波形发生器进行测试的时候,输出的波形不会随着输入信号的频率变化而变化,始终为左右,于是想到没有接输入信号,直接查看输入端和输出端的波形,结果如下: 图16 无限增益多路反馈电路

13、的自激振荡仿真波形 仿真的波形图中上面的波形是A端,即输入端的波形,下面的波形是输出端的波形,两个探针A/B分别放在输入和输出端。这里没有输入的信号,输出却稳定在将近,可知电路产生了自激震荡。 对电路进行改进,重新选取参数 对电路的波形进行仿真,发现峰峰值比较小,与实验要求差距较大,由,可知,缩小的值会使放大倍数增大,而且对通带的中心频率影响也较小。电容值取实验室有的电容。改进后的电路图如下所示图17 改进后的无限增益多路反馈电路 对电路进行仿真,查看仿真出的波形结果如下图,由波形可以知道该电路产生的三次正弦波的频率是满足实验要求的,但是峰峰值没有达到要求的9V。两个波形的峰峰值单位分别是和图

14、18 三次正弦波仿真波形4 原理总图 图19 总体方框图5 元器件清单表1-3 元器件清单6 调试过程及测试数据(或者仿真结果) 为使电路便于调试我们采用分块调试的方法。6.1 通电前检查 电路安装完毕后,经检查电路各部分接线正确,电源、元器件之间无短路,器件无接错现象。6.2 仿真结果 图20 总体仿真波形图6.3实验结果分析 观察示波器上显示波形,可以看出方波和锯齿波以及正弦波波形良好,没有失真现象,达到了课题的要求。7 小结 本次实验时间较长,在仿真设计电路的阶段占了很大一部分时间,拖慢了实验进度。在电路仿真设计中,开始没有选取实验要求使用的LM324运放,导致在设计无限增益多路反馈电路

15、时出现了自激振荡而找不到具体的原因。掌握了单电源的使用方法,以及对单电源电路的参数选择,以及尽量减小单电源偏执电路对原电路影响的方法。了解了运放的型号不同,参数会有所不同,会很大地影响电路仿真的结果。在实际电路的制作过程中,因为电阻、电容值的误差,实际需要进行参数的再次调整,而且有些电路焊接的影响在电路仿真阶段是无法预知的。8 体会通过这次课设使我学到了很新的东西,知道了怎样去设计电路、调试电路以及对电路进行修正,体会到了理论与实践的差异。课程设计虽然有点难但是确实能锻炼我们对知识的掌握以及运用理论指实践的能力。当我一着手清理自己的设计成果,一种少有的成功喜悦即刻使倦意顿消虽然这是我刚学会走完的第一步,也是人生的一点小小的胜利,然而它令我感到自己成熟的许多,通过课程设计,使我深体会到,干任何事都必须耐心,细致通过这次课程设计,加强了我们动手、思考和解决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论