初一下册数学知识点_第1页
初一下册数学知识点_第2页
初一下册数学知识点_第3页
初一下册数学知识点_第4页
初一下册数学知识点_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一下册数学知识点第四章 整式的运算一、整式单项式和多项式统称整式。a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一

2、项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。二、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

3、b) 指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;d)当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为整数);e)公式还可以逆用: (m、n均为整数)a)幂的乘方法则: (m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。b) (m,n都为整数)。c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3d)底数有时形式不同,但可以化成相同。e)

4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。g) 幂的乘方与积乘方法则均可逆向运用。五、同底数幂的除法a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a0).b)在应用时需要注意以下几点:1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。2)任何不等于0的数的0次幂等于1,即a0=1(a0) ,如100=1 ,(-2.50=1),则00无意义。c)任何不等于0的

5、数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如 , d)运算要注意运算顺序。六、整式的乘法单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;b)相同字母相乘,运用同底数幂的乘法法则;c)只在一个单项式里含有的字母,要连同它

6、的指数作为积的一个因式;d)单项式乘法法则对于三个以上的单项式相乘同样适用;e)单项式乘以单项式,结果仍是一个单项式。单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;c) 在混合运算时,要注意运算顺序。多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。多项式与多项式相乘时要注意以下几点:a)多项式与

7、多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;b)多项式相乘的结果应注意合并同类项;c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 。   七.平方差公式两数和与这两数差的积,等于它们的平方差,即 。其结构特征是:a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

8、b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八、完全平方公式两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即 口诀:首平方,尾平方,2倍乘积在中央;a)公式左边是二项式的完全平方;b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。九、整式的除法单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式

9、除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。第五章 相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。四、知识框架 五

10、、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最

11、短。(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。8.同位角、内错角、同旁内角:同位角:1与5像这样具有相同位置关系的一对角叫做同位角。内错角:2与6像这样的一对角叫做内错角。同旁内角:2与5像这样的一对角叫做同旁内角。9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。10.平行线:在同一平面内,不相交的两条直线叫做平行线。11.命题:判断一件事情的语句叫命题。12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。13.假命题:条件和结果相矛盾的命题是假命题。14.平移:在平面内,将一个图形沿某个方向

12、移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。16.定理与性质对顶角的性质:对顶角相等。17.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。19.平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。20.平行线的判定:

13、判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。21.命题的扩展三种命题(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另

14、外一个命题叫做原命题的逆否命题。四种命题的相互关系(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。(2)四种命题的真假关系:两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系命题之间的关系(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。(3)命题的分类:A:原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增

15、。B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1.C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,如:若x小于1,则f(x)=(x-1)2不单调递增。D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,如:若f(x)=(x-1)2不单调递增,则x小于1.(4)命题的否定命题的否定是只将命题的结论否定的新命题,这与否命题不同。(5)4种命题及命题的否定的真假性关系原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。充分条件与必要条件(1)“若p,则q”为真命题,叫做由p推出q

16、,记作p=>q,并且说p是q的充分条件,q是p的必要条件。(2)“若p,则q”为假命题,叫做由p推不出q,记作p>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。充要条件如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。第六章 平面直角坐标系一、目标与要求1.解有序数对的应用意义,了解平面上确定点的常用方法。2.培养学生用数学的意识,激发学生的学习兴趣。3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐

17、标的变化,来判定图形的移动过程。4.发展学生的形象思维能力,和数形结合的意识。5.坐标表示平移体现了平面直角坐标系在数学中的应用。二、重点掌握坐标变化与图形平移的关系;有序数对及平面内确定点的方法。三、难点利用坐标变化与图形平移的关系解决实际问题;利用有序数对表示平面内的点。四、知识框架五、知识点、概念总结1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分

18、别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。6.特殊位置的点的坐标的特点(1)x轴上的

19、点的纵坐标为零;y轴上的点的横坐标为零。(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。(4)点到轴及原点的距离。点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;7.在平面直角坐标系中对称点的特点(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)(3)关于原点成中心对称的点的坐标,横坐标与横坐标

20、互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)8.各象限内和坐标轴上的点和坐标的规律第一象限:(+,+)正正第二象限:(-,+)负正第三象限:(-,-)负负第四象限:(+,-)正负x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)x轴上的点的纵坐标为0,y轴上的点的横坐标为0.原点:(0,0)注:以数对形式(x,y)表示的坐标系中的点(如2,-4),"2"是x轴坐标,"-4"是y轴坐标。9.坐标方法的简单应用:(1)用坐标表示地理位置(2)用坐标表示平移10.平面直角坐标系其他公式(1)坐标平面内的点与有序实数一

21、一对应。(2) 一三象限角平分线上的点横纵坐标相等。(3)二四象限角平分线上的点横纵坐标互为相反数。(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。(5)y轴上的点,横坐标为0.(6)x轴上的点,纵坐标为0.(7)坐标轴上的点不属于任何象限。六、经典例题例1一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,如果A1求坐标为(3,0),求点 A5的坐标。例2如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为

22、(     )A、(0,3) B、(2,3) C、(3,2) D、(3,0)例3如图2,根据坐标平面内点的位置,写出以下各点的坐标:A(      ),B(      ),C(     )。例4如图,面积为12cm2的ABC向x轴正方向平移至DEF的位置,相应的坐标如图所示(a,b为常数),(1)、求点D、E的坐标(2)、求四边形ACED的面积。例5过两点A(3,4),B(-2,4)作直线AB,则直线AB(     )A、经过原点    

23、; B、平行于y轴C、平行于x轴    D、以上说法都不对第七章 三角形一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。4.三角形的内角和定理,能用平行线的性质推出这一定理。5.能应用三角形内角和定理解决一些简单的实际问题。二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;

24、用三角形三边不等关系判定三条线段可否组成三角形。四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的形状是固定的,三角形的这

25、个性质叫三角形的稳定性。9. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角和;推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。12.多边形:在平面内

26、,由一些线段首尾顺次相接组成的图形叫做多边形。13.多边形的内角:多边形相邻两边组成的角叫做它的内角。14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。19.公式与性质多边形

27、内角和公式:n边形的内角和等于(n-2)·180°20.多边形外角和定理:(1)n边形外角和等于n·180°-(n-2)·180°=360°(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°21.多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。(2)n边形共有n(n-3)/2条对角线。六、经典例题例1如图,已知ABC中,AQ=PQ、PR=PS、PRAB于R,PSAC于S,有以下三个结论:AS=AR;QPAR;BR

28、PCSP,其中( ).(A)全部正确 (B)仅正确 (C)仅、正确 (D)仅、正确例2如图,结合图形作出了如下判断或推理:如图甲,CDAB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;如图乙,如果ABCD,那么B=D;如图丙,如果ACD=CAB,那么ADBC;如图丁,如果1=2,D=120°,那么BCD=60°.其中正确的个数是( )个.(A)1 (B)2 (C)3 (D)4例3在如图所示的方格纸中,画出,DEF和DEG(F、G不能重合),使得ABCDEFDEG.你能说明它们为什么全等吗?例4测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管

29、口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?例5在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与ABC的两边相交的直线,使截得的三角形与ABC相似,并且面积是AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。 第八章 二元一次方程组一、目标与要求1.认识二元一次方程和二元一次方程组。2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。3.会用代入法解二元一次方程组。4.初步体会解二元一次方程组的基本思想“消元”。5.通过研究解决问题的方法,培养

30、学生合作交流意识与探究精神。6.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。7.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。二、重点用代入消元法解二元一次方程组;理解二元一次方程组的解的意义。三、难点求二元一次方程的正整数解;探索如何用代入法将“二元”转化为“一元”的消元过程。四、结构图五、知识点、概念总结1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a0,b0)。如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整

31、式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。归纳:基本思路:“消元”把“二元”变为“一元”。6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组

32、的解,这种方法叫做代入消元法,简称代入法。7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。8.教科书中没有的几种解法(1)加减-代入混合使用的方法:特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。(2)换元法特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。(3)设参数法9.列方程(组)解应用题步骤:(1)审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。(2)设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越

33、多,方程越易列,但越难解。(3)用含未知数的代数式表示相关的量。(4)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。(5)解方程及检验。(6)答案。综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。10.三元一次方程组:如果方程组中含有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。举例如下:11. 三元一次方程组解法:主要的解法就是加减消元法

34、和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。12. 简单的三元一次方程组的解法步骤:(1)思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法。(2)步骤:利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;解这个二元一次方程组,求得两个未知数的值;将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。灵活运用加减消元法,代入消元法解简单的三元一次方程组。第九章 不等式与不等式组一、目标与要求1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际

35、问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。二、知识框架三、重点理解并掌握不等式的性质;正确运用不等式的性质;建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;寻找实际问题中的不等关系,建立数学模型;一元一次不等式组的解集和解法。四、难点一元一次不等式组解集

36、的理解;弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。五、知识点、概念总结1.不等式:用符号"<",">","",""表示大小关系的式子叫做不等式。2.不等式分类:不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"","&q

37、uot;连接的不等式称为非严格不等式,或称广义不等式。3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-12的解集是x3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。6.解不等式可遵循的一些同解原理(1)不等式F(x)< G(x)与不等式 G(x)>F(x

38、)同解。(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。7.不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z&

39、gt;y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式

40、,叫做一元一次不等式。9.解一元一次不等式的一般顺序:(1)去分母 (运用不等式性质2、3)(2)去括号(3)移项 (运用不等式性质1)(4)合并同类项(5)将未知数的系数化为1 (运用不等式性质2、3)(6)有些时候需要在数轴上表示不等式的解集10. 一元一次不等式与一次函数的综合运用:一般先求出函数表达式,再化简不等式求解。11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。12.解一元一次不等式组的步骤:(1) 求出每个不等式的解集;(2) 求出每个不等式的解集的公共部分;(一般利用数轴)(3) 用代数符号语言来表示公共部分。(也可以

41、说成是下结论)13.解不等式的诀窍(1)大于大于取大的(大大大);例如:X>-1,X>2 ,不等式组的解集是X>2(2)小于小于取小的(小小小);例如:X<-4,X<-6,不等式组的解集是X<-6(3)大于小于交叉取中间;(4)无公共部分分开无解了;14.解不等式组的口诀(1)同大取大例如,x>2,x>3 ,不等式组的解集是X>3(2)同小取小例如,x<2,x<3 ,不等式组的解集是X<2(3)大小小大中间找例如,x<2,x>1,不等式组的解集是1(4)大大小小不用找例如,x<2,x>3,不等式组无

42、解15.应用不等式组解决实际问题的步骤(1)审清题意(2)设未知数,根据所设未知数列出不等式组(3)解不等式组(4)由不等式组的解确立实际问题的解(5)作答16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。四、经典例题例1当x 时,代数代2-3x的值是正数。   例2一元一次不等式组的解集是 ( )  例3已知方程组的解为负数,求k的取值范围。例4某种植物适宜生长在温度为1820的山区,已知山区海拔每升高100米,气温下降0。5,现在测出山脚下的平均气温为22,问该植物种在山的哪一部分为宜?(假设山脚

43、海拔为0米)例5某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。(2)求一年中进入该园林至少超过多少次时,购买A类年票比

44、较合算。第十章 数据的收集、整理与描述一、目标与要求1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。二、重点学会画频数分布直方图;分层抽样的方法和样本的分析、归纳;抽样调查、样本、总体等概念以及用样本估计总体的思想;全面调查的过程(数据的收集

45、、整理、描述)。三、难点绘制扇形统计图;样本的抽取;分层抽样方案的制定;确定组距和组数。四、知识框架五、知识点、概念总结1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。如下图所示:3.全面调查:考察全体对象的调查方式叫做全面调查。4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。6.总体:要考察的全体对象称为总体。7.个体:组成总体的每一个考察对象称为个体。8.样本:被抽取的所有个体组成一个样本。为了使样本能够正确反映总体情况,对总体要有明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论