版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、X教学目标:1.会直接运用点到直线的距离公式进行计算2.会根据已知的 若干点到直线的距离大小求点的坐标或直线的方程,渗透方程 思想3.渗透由特殊到一般的思想4.理解点到直线的距离公式的推导重点难点:重点:点到直线的距离公式及其应用难点:点到直线的距离公式的推导复习提复习提问问1、平面上点与直线的位置关系怎样?平面上点与直线的位置关系怎样?2、何谓点到直线的距离?何谓点到直线的距离?答案答案: :1.1.有两种有两种, ,一种是点在直线上一种是点在直线上, ,另一种是点在直线外另一种是点在直线外. .2.2.从点作直线的垂线从点作直线的垂线, , 点到垂足的线段长点到垂足的线段长. .教学过程教
2、学过程LL1QP(x0,y0)L:Ax+By+C=0 已知:点已知:点P(x0,y0)和直和直L:Ax+By+C=0,怎样,怎样求点求点P到直线到直线L的距离呢?的距离呢?根据定义,点到直线的距离是点到直线的根据定义,点到直线的距离是点到直线的垂线段的长。垂线段的长。过点过点P作直线作直线L1L于于Q,怎么能够得到线段怎么能够得到线段PQ的长的长?利用两点间的距离公式求出利用两点间的距离公式求出|PQ|.则线段则线段PQ的长就是点的长就是点P到直线到直线L的距离的距离.解题思路:解题思路:步步 骤骤 (1)求直线求直线L1的斜率;的斜率; (2)用点斜式写出用点斜式写出L1的方程;的方程; (
3、3)求出求出Q点的坐标点的坐标; (4)由两点间距离公式由两点间距离公式d=|PQ|. )(1ABk)(00 xxAByy),(111yxQQLL设点)()(201201yyxxd),(11yx 解解: :设设A0,B0,A0,B0,过点过点P P作作L L的垂的垂线线L L1 1, ,垂足为垂足为Q,Q, (2) )0 x1(xAB0y1y(1) 0C1By1Ax )3(111BCAxy得由LL1QP(x0,y0)L:Ax+By+C=0由点斜式得由点斜式得L L1 1的方程的方程)x-(xABy-y00一般情况一般情况 A0,B0时时 把(把(3)代入()代入(2)得)得 设设Q Q点的坐标
4、为点的坐标为(x(x1 1,y,y1 1).).又又Q(xQ(x1 1,y,y1 1) )是是L L1 1与与L L的交点,则的交点,则)4()(220001BACByAxAxx),(11yx220001)(BACByAxByy201201)()(|yyxxPQ22220022)BA()CByAX)(BA( 2200BA|CByAx| 2200BA|CByAx|d 即即2220022200)()(BACByAxBBACBYAxA把(把(4)代入()代入(2)得)得|0ACxd|0BCyd当当AB=0(A,B不全为不全为0)(1)Ax+C=0XYO),(00yxP用公式验证结果相同用公式验证结果
5、相同(2)By+C=0用公式验证结果相同用公式验证结果相同O),(00yxPXYOyxl:Ax+By+C=0P(x0,y0)2200BACByAxd 1.此公式的作用是求点到直线的距离;此公式的作用是求点到直线的距离;2.此公式是在此公式是在A 0 、B0的前提下推导的;的前提下推导的;3.如果如果A=0或或B=0,此公式也成立;,此公式也成立;4.用此公式时直线方程要先化成一般式。用此公式时直线方程要先化成一般式。.02),1, 1(;01),3 ,2(;0),2, 1(;3774),0,0(:0134),0,2(;043),3 ,0(ypxPyxPyxPyxPyxP例例1、求下列各点到相应
6、直线的距离、求下列各点到相应直线的距离5125965653722311.22)2 , 1(. 2的直线的方程且与原点的距离等于求过点例A 解解:设所求直线的方程为设所求直线的方程为y-2=k(x+1) 即即 kx-y+2+k=0 由题意得由题意得221|200|2kkk2+8k+7=0 11k解得72k所求直线的方程为所求直线的方程为x+y-1=0或或7x+y+5=0.)2 , 1(A2-12222例例2的变式练习的变式练习求过点A(-1,2)且与原点的距离等于 (1).距离改为1;(2).距离改为 ;(3).距离改为3(大于 ).想一想?在练习本上画图形做.55例2的变式练习(1).距离改为
7、距离改为1,x=-14(y-2)=-3(x+1)2-1或或x=-1(易漏掉易漏掉)2 , 1(A则用上述方法得则用上述方法得4(y-2)=3(x+1)例2的变式练习(2).距离改为距离改为 ,2(y-2)=x+12-1555则得则得2(y-2)=x+1;)2 , 1(A(3).距离改为3(大于 ),则23-1-35无解。无解。)2 , 1(A例例2的变式练习的变式练习1.1.今天我们学习了点到直线的距离公式今天我们学习了点到直线的距离公式, ,要要熟记公式的结构熟记公式的结构. .应用时要注意将直线的方应用时要注意将直线的方程化为一般式程化为一般式. .2.2.当当A=0A=0或或B=0(B=
8、0(直线与坐标轴垂直直线与坐标轴垂直) )时,仍时,仍然可用公式,这说明了特殊与一般的关系然可用公式,这说明了特殊与一般的关系. .3.3.例例2 2的变式练习的变式练习, ,用图形解释运算结果用图形解释运算结果, ,又一次让我们体会了数学与形式结合的思又一次让我们体会了数学与形式结合的思想想. .作业:书作业:书9797页页5 5、6 6、7 7数学之友相应练习数学之友相应练习X教学目标1.进一步巩固点到直线的距离公式2.理解两条平行直线间的距离公式的推导3.掌握两条平行直线间的距离公式并会运用4.渗透数形结合思想,对学生进行对立统一观点的 教育重点和难点重点:两平行线间的距离公式及其应用难
9、点:两平行线间的距离公式的推导难点:两平行线间的距离公式的推导教学过程教学过程1 1、复习点到直线的距离公式、复习点到直线的距离公式2 2、如何求两平行线间的距离?、如何求两平行线间的距离?例例3 求平行线求平行线2x-7y+8=0与与2x-7y-6=0的距离。的距离。Oyxl2: 2x-7y-6=0l1:2x-7y+8=0 两平行线间的两平行线间的距离处处相等距离处处相等在在l2上任取一点,例如上任取一点,例如P(3,0)P到到l1的距离等于的距离等于l1与与l2的距离的距离5353145314)7(28073222 d直线到直线的距离转化为点到直线的距离直线到直线的距离转化为点到直线的距离
10、P(3,0)练习练习3.求下列两条平行线的距离:求下列两条平行线的距离:(1) L1:2x+3y-8=0 , L2:2x+3y+18=0(2) L1: 3x+4y=10 , L2: 3x+4y-5=0解解 :点点P(4,0)在在L1上上 132132632|180342|22d则,)25, 0(:1LP在点解143|525403|22d则132132632| ) 8(18|22d143| )10(5|22dOyxl2l1P任意两条平行直线都可以写成如任意两条平行直线都可以写成如下形式:下形式:l1 :Ax+By+C1=0l2 :Ax+By+C2=02212BACCd22200|BACByAxd的距离到直线则点上在直线设2100),(LPLyxP)(001ByAxC又直线的方程直线的方程应化为一般应化为一般式!式! 进一步进一步,利用中点公式可以得到点利用中点公式可以得到点P(x0,y0)关于直线关于直线l:Ax+By+C=0的对称点的对称点P1(x1,y1)的坐的坐标公式为标公式为: .BA)CByAx(B2yy,BA)CByAx(A2xx220001220001利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级学有余力学生的教学方法研究
- 《土壤地理学》笔记
- 2025年湖北省高考数学模拟试卷(附答案解析)
- 数据迁移与转换
- 阅读理解记叙文(练习)(学生版)-2025年高考英语一轮复习(新教材新高考)
- 湖北省襄阳市襄州区2024-2025学年九年级上学期9月月考英语试题(含答案)
- 2024年18-萘二甲酰亚胺项目投资申请报告代可行性研究报告
- 有理数的乘方(六大题型)-2024-2025学年沪教版六年级数学上册同步练习
- 3.2 二次函数 同步练习
- 读书交流会主持词
- 2024年红十字应急救护知识竞赛考试题库500题(含答案)
- 当代社会政策分析 课件 第八章 儿童社会政策
- 2023年徽商银行市区支行招聘综合柜员信息笔试上岸历年典型考题与考点剖析附带答案详解
- 2024年湖南化工职业技术学院单招职业技能测试题库带答案解析
- JGT 472-2015 钢纤维混凝土
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 急诊科进修三个月总结
- 推拿手法完整版本
- 老人去世生平简历范文(十八篇)
- 五育并举-同心筑梦家长会课件
- DLT 5630-2021 输变电工程防灾减灾设计规程-PDF解密
评论
0/150
提交评论