版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1章 随机事件及其概率(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(2)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试验的样本空间,用表示。一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,表示事件,它们
2、是的子集。为必然事件,Ø为不可能事件。不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为1,而概率为1的事件也不一定是必然事件。(3)事件的关系与运算关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事
3、件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。运算: 结合率:A(BC)=(AB)C A(BC)=(AB)C 分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC) 德摩根率: ,(4)概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:1° 0P(A)1, 2° P() =13° 对于两两互不相容的事件,有则称P(A)为事件的概率。(5)古典概型1° ,2° 。设任一事件,它是由组成的,则有P(A)= =(6)
4、几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,。其中L为几何度量(长度、面积、体积)。(7)加法公式P(A+B)=P(A)+P(B)-P(AB)当AB不相容P(AB)0时,P(A+B)=P(A)+P(B)当AB独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B)(8)减法公式P(A-B)=P(A)-P(AB)当BA时,P(A-B)=P(A)-P(B)当A=时,P()=1- P(B)(9)条件概率定义 设A、B是两个事件,且P(A)>0,
5、则称为事件A发生条件下,事件B发生的条件概率,记为。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(/B)=1P(/A)=1-P(B/A)(10)乘法公式乘法公式:更一般地,对事件A1,A2,An,若P(A1A2An-1)>0,则有。(11)独立性两个事件的独立性设事件、满足,则称事件、是相互独立的。若事件、相互独立,且,则有若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件Ø与任何事件都相互独立。Ø与任何事件都互斥。多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C)
6、;P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。(12)全概公式设事件满足1°两两互不相容,2°,则有。全概率公式解决的是多个原因造成的结果问题,全概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;(13)贝叶斯公式设事件,及满足1° ,两两互不相容,>0,1,2,2° ,则,i=1,2,n。此公式即为贝叶斯公式。,(,),通常叫先验概率。,(,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。将试验可看成
7、分为两步做,如果求在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式。(14)伯努利概型我们作了次试验,且满足u 每次试验只有两种可能结果,发生或不发生;u 次试验是重复进行的,即发生的概率每次均一样;u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,。第二章 随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量的可能取值为Xk(k=1,2,)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,,则称上式为离散
8、型随机变量的概率分布或分布律。有时也用分布列的形式给出:。显然分布律应满足下列条件:(1), (2)。(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有, 则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:1、 。2、 。3、4、P(x=a)=0,a为常数,连续型随机变量取个别值的概率为0(3)分布函数设为随机变量,是任意实数,则函数称为随机变量X的分布函数,本质上是一个累积函数。 可以得到X落入区间的概率。分布函数表示随机变量落入区间( ,x内的概率。分布函数具有如下性质:1° ;2° 是单调不减
9、的函数,即时,有 ;3° , ;4° ,即是右连续的;5° 。对于离散型随机变量,;对于连续型随机变量, 。(4)六大分布0-1分布P(X=1)=p, P(X=0)=q二项分布在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。, 其中,则称随机变量服从参数为,的二项分布。记为。当时,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。泊松分布设随机变量的分布律为,则称随机变量服从参数为的泊松分布,记为或者P()。泊松分布为二项分布的极限分布(np=,n)。均匀分布设随机变量的值只落在a,b内,其密度函数在a,b上为常数,即&
10、#160;axb 其他,则称随机变量在a,b上服从均匀分布,记为XU(a,b)。分布函数为 axb 0, x<a, 1, x>b。 当ax1<x2b时,X落在区间()内的概率为。指数分布 , 0, , 其中,则称随机变量X服从参数为的指数分布。 正态分布设随机变量的密度函数为, ,其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。具有如下性质:1° 的图形是关于对称的;2° 当时,为最大值;dtexFxtò¥-=222
11、)(21)(smps若,则的分布函数为参数、时的正态分布称为标准正态分布,记为,其密度函数记为,分布函数为。是不可求积函数,其函数值,已编制成表可供查用。(-x)1-(x)且(0)。如果,则。 (6)分位数下分位表:;上分位表:。(7)函数的分布函数离散型已知的分布列为 ,的分布列(互不相等)如下:,若有某些相等,则应将对应的相加作为的概率。连续型先利用X的概率密度fX(x)写出Y的分布函数FY(y)P(g(X)y),再利用变上下限积分的求导公式求出fY(y)。第三章 二维随机变量及其分布(1)联合分布离散型如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为
12、离散型随机量。设=(X,Y)的所有可能取值为,且事件=的概率为pij,称为=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示: YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1这里pij具有下面两个性质:(1)pij0(i,j=1,2,);(2)连续型对于二维随机向量,如果存在非负函数,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D=(X,Y)|a<x<b,c<y<d有则称为连续型随机向量;并称f(x,y)为=(X,Y)的分布密度或称为X和Y的联合分布密度。分布密度f(x,y)具有下面两个性质:(1) f(x
13、,y)0;(2) 2联合分布函数设(X,Y)为二维随机变量,对于任意实数x,y,二元函数称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:(1)(2)F(x,y)分别对x和y是非减的,即当x2>x1时,有F(x2,y)F(x1,y);当y2>y1时,有F(x,y2) F(x,y1);(3)F(x,y)分别对x和y是右连续的,即(4)(5)对于P(x1<xx2,y1<yy2)=3边缘分布离散型X的边缘分布为;Y的边缘分布为。连续型X的边缘分
14、布密度为Y的边缘分布密度为4条件分布离散型在已知X=xi的条件下,Y取值的条件分布为在已知Y=yj的条件下,X取值的条件分布为连续型在已知Y=y的条件下,X的条件分布密度为;在已知X=x的条件下,Y的条件分布密度为5独立性一般型F(X,Y)=FX(x)FY(y)离散型有零不独立连续型f(x,y)=fX(x)fY(y)直接判断,充要条件:可分离变量正概率密度区间为矩形二维正态分布0随机变量的函数若X1,X2,Xm,Xm+1,Xn相互独立, h,g为连续函数,则:h(X1,X2,Xm)和g(Xm+1,Xn)相互独立。特例:若X与Y独立,则:h(X)和g(Y)独立。例如:若X与Y独立,则:3X+1和
15、5Y-2独立。6二维均匀分布设随机向量(X,Y)的分布密度函数为其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)U(D)。图3.27正态分布设随机向量(X,Y)的分布密度函数为其中是5个参数,则称(X,Y)服从二维正态分布,记为(X,Y)N(由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即XN(但是若XN(,(X,Y)未必是二维正态分布。8函数的分布Z=X+Y根据定义计算:对于连续型,fZ(z)两个独立的正态分布的和仍为正态分布()。n个相互独立的正态分布的线性组合,仍服从正态分布。, Z=max,min(X1,X2,Xn)若相互独立,其分布函数
16、分别为,则Z=max,min(X1,X2,Xn)的分布函数为:第四章 随机变量的数字特征(1)一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量,其分布律为P()pk,k=1,2,n,(要求绝对收敛)设X是连续型随机变量,其概率密度为f(x),(要求绝对收敛)函数的期望Y=g(X) Y=g(X)方差D(X)=EX-E(X)2,标准差(2)期望的性质(1) E(C)=C(2) E(CX)=CE(X)(3) E(X+Y)=E(X)+E(Y),(4) E(XY)=E(X) E(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。(3)方差的性质(1) D(C)=0;E(C)=
17、C(2) D(aX)=a2D(X); E(aX)=aE(X)(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)-E2(X)(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。 D(X±Y)=D(X)+D(Y) ±2E(X-E(X)(Y-E(Y),无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。(4)常见分布的期望和方差期望方差pnp泊松分布指数分布(5)二维随机变量的数字特征期望函数的期望方差协方差对于随机变量X与Y,称它们的二阶混合中心矩为X与Y的协方差或相关矩,记为,即与记号相对应,X与Y的方差D(X)与D(Y)也可分别记为与。相关系数对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称为X与Y的相关系数,记作(有时可简记为)。|1,当|=1时,称X与Y完全相关:完全相关而当时,称X与Y不相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林省长春市九台区2024-2025学年部编版七年级历史上学期期中测试题(含答案)
- 2024年度云南省高校教师资格证之高等教育法规通关题库(附带答案)
- 2024年度云南省高校教师资格证之高等教育学提升训练试卷A卷附答案
- 赣南师范大学《地图学》2022-2023学年第一学期期末试卷
- 阜阳师范大学《音乐学科课程标准与教材分析》2021-2022学年第一学期期末试卷
- 阜阳师范大学《体育保健学》2021-2022学年第一学期期末试卷
- 阜阳师范大学《高数二》2021-2022学年第一学期期末试卷
- 大象版四年级(下)全册科学教案
- 福建师范大学《音乐美学基础》2022-2023学年第一学期期末试卷
- 2024年广东新高考化学试卷试题真题答案详解(精校打印版)
- 应急第一响应人理论考试试卷(含答案)
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- EDA实验报告1组合逻辑电路的设计
- 幸福在哪里作文800字高中范文
- 五人制足球比赛记录表.doc
- 整式的乘法与因式分解所有知识点总结
- 《运动生理学》教案
- 陈春花管理学著作精华解读之《管理的常识》
- 钻孔灌注桩试桩施工方案
- 外贸销售合同
- 混凝土地面施工方案
评论
0/150
提交评论