版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、综合性设计性实验报告专 业: 通信工程专业12级 学 号: 姓 名: 实验所属课程: 宽带无线接入技术 实验室(中心): 软件与通信实验中心 指 导 教 师 : 2015年4月教师评阅意见:签名: 年 月 日实验成绩:一、题目OFDM系统的Matlab仿真二、仿真要求要求一:OFDM系统的数据传输传输的数据随机产生;调制方式采用16QAM;必须加信道的衰落必须加高斯白噪声接收端要对信道进行均衡。要求二:要求对BER的性能仿真设计仿真方案,得到在数据传输过程中不同信噪比的BER性能结论,要求得到的BER曲线较为平滑。3、 仿真方案详细设计(一)OFDM系统的基本介绍正交频分复用(OFDM)技术与
2、已经普遍熟知应用的频分复用(FDM:Frequency Division Multiplexing)技术十分相似,与FDM基本原理相同,OFDM把高速的数据流通过串并变换,分配到速率相对较低的若干个频率子信道中进行传输,不同的是,OFDM技术利用了更好的控制方法,使频谱利用率有所提高。OFDM与FDM的主要差别为以下几方面:第一:在常规的广播系统中,每一个无线站在不同的频率上发送信号,有效的运用FDM来保证每个站点的分隔,广播系统中的每一个站点没有任何的同位或同步;但使用OFDM传播技术,譬如DAB,从多个无线站来的信息信号被组合成一个单独的复用数据流,这些数据是由多个子载波密集打包组成,然后
3、将在OFDM体系中传输,在OFDM信号内的所有子载波都是在时间和频率上同步的,使子载波之间的干扰被严格控制。这些复用的子载波在频域中交错重叠,但因为调制的正交性且采用循环前缀作为保护间隔,所以不会发生载波间干扰ICI(Inter-Carrier Interference)。第二:对传统的频分复用(FDM)系统而言,传播的信号需要在两个信道之间存在较大的频率间隔即保护带宽来防止干扰,这降低了全部的频谱利用率;然而应用OFDM的子载波正交复用技术大大减少了保护带宽,提高了频谱利用率。如图 31。在早期时候,正交频分复用(OFDM)系统中,各子载波采用正交滤波器将信道分成多个子信道,但要用很多的滤波
4、器,尤其是当路数增多的时候。1971年,Weinstein及Ebert等将DFT应用在多载波传输系统中,从而很方便地实现了多路信号的复合和分解。OFDM系统的一个重要优点就是可以利用快速傅立叶变换实现调制和解调,从而大大简化系统实现的复杂度。图 31 FDM与OFDM带宽利用率的比较正交频分复用(OFDM)系统是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干个子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制
5、(MCM:Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的相互干扰,还大大提高了频谱利用率。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落和窄带干扰。在单载波系统中,一次衰落或者干扰就可以导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到深衰落的影响。(二)OFDM系统的基本原理及其技术(1)OFDM系统基本原理一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号
6、周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。图3-2 OFDM系统原理框图在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为:式中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,G
7、I)。加保护间隔后的信号可表示为式(2),最后信号经并串变换及DA转换,由发送天线发送出去。接收端将接收的信号进行处理,完成定时同步和载波同步。经AD转换,串并转换后的信号可表示为:然后,在除去CP后进行FFT解调,同时进行信道估计(依据插入的导频信号),接着将信道估计值和FFT解调值一同送入检测器进行相干检测,检测出每个子载波上的信息符号,最后通过反映射及信道译码恢复出原始比特流。除去循环前缀(CP)经FFT变换后的信号可表示为:式中:H(m)为信道h(n)的傅里叶转换;Z(m)为符号间干扰和载波间干扰z(n)的傅里叶变换;W(m)是加性高斯白噪声w(n)的傅里叶变换。(2) OFDM系统仿
8、真设计涉及的技术及其实现方法 1.保护间隔(GI)无线多径信道会使通过它的信号出现多径时延,这种多径时延如果扩展到下一个符号,就会造成符号问串扰,严重影响数字信号的传输质量。采用OFDM技术的最主要原因之一是它可以有效地对抗多径时延扩展。通过把输入的数据流经过串并变换分配到N个并行的子信道上,使得每个用于去调制子载波的数据符号周期可以扩大为原始数据符号周期的N倍,因此时延扩展与符号周期的比值也同样可降低为1N。在OFDM系统中,为了最大限度地消除符号间干扰,可以在每个OFDM符号之间插入保护间隔,而且该保护间隔的长度Tg一般要大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号
9、造成干扰。当多径时延小于保护间隔时,可以保证在FFT的运算时间长度内,不会发生信号相位的跳变。因此,OFDM接收机所看到的仅仅是存在某些相位偏移的、多个单纯连续正弦波形的叠加信号,而且这种叠加也不会破坏子载波之间的正交性。然而,如果多径时延超过了保护间隔,则在FFT运算时间长度内可能会出现信号相位的跳变,因此在第一路径信号与第二路径信号的叠加信号内就不再只包括单纯连续正弦波形信号,从而导致子载波之间的正交性有可能遭到破坏,就会产生信道间干扰(ICI),使得各载波之间产生干扰。2.循环前缀(CP)为了消除由于多径传播造成的信道间干扰ICI,一种有效方法是将原来宽度为T的OFDM符号进行周期扩展,
10、用扩展信号来填充保护间隔。将保护间隔内(持续时间用Tg表示)的信号称为循环前缀(CyclicPrefix,CP)。在实际系统中,当OFDM符号送入信道之前,首先要加入循环前缀,然后进入信道进行传送。在接收端,首先将接收符号开始的宽度为Tg的部分丢弃,然后将剩余的宽度为T的部分进行傅里叶变换,再进行解调。在OFDM符号内加入循环前缀可以保证在一个FFT周期内,OFDM符号的时延副本内所包含的波形周期个数也是整数,这样,时延小于保护间隔Tg的时延信号就不会在解调过程中产生信道间干扰ICI。3.OFDM基本参数的选择种OFDM参数的选择就是需要在多项要求冲突中进行折衷考虑。通常来讲(如前所述),首先
11、要确定三个参数:带宽、比特率以及保护间隔。按照惯例,保护间隔的时间长度应该为应用移动环境信道下时延均方根值的24倍。一旦确定了保护间隔,则OFDM符号周期长度就可以确定。为了最大限度地减少由于插入保护间隔所带来的信噪比损失,希望OFDM符号周期长度要远远大于保护间隔长度。但是符号周期长度又不可能任意大,否则OFDM系统中包括更多的子载波数,从而导致子载波间隔相应减少,系统实现的复杂度增加,而且还加大了系统的峰值平均功率比,同时使系统对频率偏差更加敏感。因此在实际应用中,一般选择符号周期是保护间隔长度的5倍,这样由于插入保护比特所造成的信噪比损耗只有1 dB左右。在确定了符号周期和保护间隔之后,
12、子载波的数量可以直接利用-3 dB带宽除以子载波间隔(即去掉保护间隔后的符号周期的倒数)得到或者可以利用所要求的比特速率除以每个子信道的比特速率来确定子载波的数量。每个信道中所传输的比特速率可以由调制类型、编码速率和符号速率来确定。4有用符号持续时间有用符号持续时间T对子载波之间间隔和译码的等待周期都有影响,为了保持数据的吞吐量,子载波数目和FFT的长度要有相对较大的数量,这样就导致了有用符号持续时间的增大。在实际应用中,载波的偏移和相位的稳定性会影响两个载波之间间隔的大小,如果为移动着的接收机,则载波间隔必须足够大,这样才能忽略多普勒频移。总之,选择有用符号的持续时间,必须以保证信道的稳定为
13、前提。5子载波数子载波数目越多,有用信号越平坦,带外衰减也快,越接近矩形,越符合通信要求,但子载波数目不能过多,越接近矩形的结果对接收端的滤波器要求越高(只有理想滤波器才能过滤,否则就造成交调干扰)。因此在子载波数目的 选择上要综合考虑传递信息的有效性和可行性。子载波数可以由信道带宽、数据吞吐量和有用符号持续时间T所决定:N=1/T,子载波数可以被设置为有用符号持续时间的倒数,其数值与FFT处理过的数据点相对应。6调制模式可以通过改变发射的射频信号幅度、相位和频率来调制信号。对于OFDM系统来说,只能采用前两种调制方法,而不能采用频率调制的方法,这是因为子载波是频率正交,而且携带独立的信息,调
14、制子载波频率会破坏这些子载波的正交特性,这是频率调制不能在OFDM系统中采用的原因。短波通信中可以采用MPSK,MQAM的调制方式。正交幅度调制要改变载波的幅度和相位,他是ASK和PAK的结合。矩形QAM信号星座具有容易产生的独特优点。此外,它们也相对容易解调。矩形QAM包括4QAM,16QAM以及64QAM等,因此每个星座点分别所对应的比特数量为2,4,6。采用这种调制方法的步长必须为2,而利用MPSK调制可传输任意比特数量如1,2,3,分别对应2PSK,4PSK以及8PSK,并且MPSK调制的另一个好处就是该调制方案是等能量调制,不会由于星座点的能量不等而为OFDM系统带来PAPR较大的问
15、题。7、 信道均衡在一般的衰落环境下,OFDM系统中均衡不是有效改善系统性能的方法。因为均衡的实质是补偿多径信道引起的码间干扰,而OFDM技术本身已经利用了多径信道的分集特性,因此在一般情况下,OFDM系统就不必再做均衡了。在高度散射的信道中,信道记忆长度很长,循环前缀CP(Cyclic Prefix)的长度必须很长,才能够使ISI尽量不出现。但是,CP长度过长必然导致能量大量损失,尤其对子载波个数不是很大的系统。这时,可以考虑加均衡器以使CP的长度适当减小,即通过增加系统的复杂性换取系统频带利用率的提高。(3)OFDM系统Matlab仿真实现详细设计1、系统参数确定需要确定的参数为:子信道,
16、子载波数,FFT长度,每次使用的OFDM符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。2、产生数据使用个随机数产生器产生二进制数据,每次产生的数据个数为carrier_count * symbols_per_carrier * bits_per_symbol。3、编码交织交织编码可以有效地抗突发干扰。4、子载波调制OFDM采用BPSK、QPSK、16QAM、64QAM4种调制方式。按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相分量Ich和正交分量Qch。其实这是一种查表的方法,以16QAM星座为例,bits_
17、per_symbol=4,则每个OFDM符号的每个子信道上有4个二进制数d1,d2,d3,d4,共有16种取值,对应星座图上16个点,每个点的实部记为Qch。为了所有的映射点有相同高的平均功率,输出要进行归一化,所以对应BPSK,PQSK,16QAM,64QAM,分别乘以归一化系数系数1,, , .输出的复数序列即为映射后的调制结果。5、串并转换。将一路高速数据转换成多路低速数据6、 IFFT。对上一步得到的相同分量和正交分量按照(Ich+Qch*i)进行IFFT运算。并将得到的复数的实部作为新的Ich,虚部作为新的Qch。在实际运用中, 信号的产生和解调都是采用数字信号处理的方法来实现的,
18、此时要对信号进行抽样, 形成离散时间信号。 由于OFDM信号的带宽为B=N·f, 信号必须以t=1/B=1/(N·f)的时间间隔进行采样。 采样后的信号用sn,i表示, i = 0, 1, , N-1,则有 从该式可以看出,它是一个严格的离散反傅立叶变换(IDFT)的表达式。IDFT可以采用快速反傅立叶变换(IFFT)来实现 7、加入保护间隔。由IFFT运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G长度的数据加到头部,构成循环前缀。如果加入空的间隔,在多径传播的影响下,会造成载波间干扰ICI。保护见个的长度G应该大于多径时的扩张的最大值。 图 3-3
19、 多径情况下,空闲保护间隔在子载波间造成的干扰图3-4 保护间隔的插入过程8、加窗加窗是为了降低系统的PAPR,滚降系数为1/32。通过这种方法,可以显著地改善OFDM通信系统高的PAPR分布,大大降低了峰值信号出现的概率以及对功率放大器的要求,节约成本。经常被采用的窗函数是升余弦窗 图3-5 经过加窗处理后的OFDM符号示意图9、通过信道。信道分为多径实验信道和高斯白噪声信道。多径时延信道直射波河延迟波对于标准时间按照固定比率递减,因此多径时延信道参数为比率和对大延迟时间。10、同步。同步是决定OFDM系统高性能十分重要的方面,实际OFDM系统都有同步过称。主要同步方法有使用导频,循环前缀,
20、忙算法三种。研究目的为同步的可以详细实现本步,基本的方针可以略过此步,假设接收端已经于发射端同步。11、去掉保护间隔。根据同步得到的数据,分别见给每个符号的同相分量和正交分量开头的保护间隔去掉。12、并串转换。将每个符号分布在子信道上的数据,还原为一路串行数据。13、 FFT。对每个符号的同相分量和正交分量按照(Ich+Qch*i)进行FFT运算。并将得到的实部作为新的Ich,虚部作为新的Qch。与发端相类似,上述相关运算可以通过离散傅立叶变换(DFT)或快速傅立叶变换(FFT)来实现, 即: 14、子载波解调FFT后的同相粉脸感和正交分量两组数据在星座图上对饮高的点,由于噪声和信道的影响,不
21、再是严格的发送端的星座图。将得到的星座图上的点按照最近原则判决为原星座图上的点,并按映射规则还原为一组数据。15、解码解交织。按照编码交织对应解码,解交织的方法,还原为原始数据,并进行纠错处理。16、计算误码率。比较第2步产生的数据和接收到的数据,计算误码率BER17、统计误码率使用for循环,将SNR从0dB到30dB逐五变化,运行主函数,统计误码率,画出误码率曲线。四、仿真结果及结论(一)OFDM系统仿真结果1、系统参数确定系统子载波数选为200,每个子载波所含的符号数选为12,系统采用16QAM的调制方案,因此,每个符号所含的比特数为4。采用512点的FFT和IFFT变换进行信号的处理。
22、保护间隔选为信号数据的1/4,其长度为128个比特位。循环后缀的长度为20个比特位。至此,系统参数确定完毕。2、 信号源的产生仿真方案通过调用Matlab系统函数产生符合系统仿真条件的信号源,其结果如下所示:图4-1信源部分数据图4-2信源数据波形图3、16QAM调制后的信号星座图图4-3 16QAM调制后信号星座图4、 给信号叠加循环前后缀图4-4 循环前后缀叠加前后信号波形图对比5、将信号进行加窗操作图4-5 信号加窗前后频谱图对比6、 信号经过信道进行传输,为了更加真实地模拟随机信道的特性,在本次仿真中加入了一定功率的高斯白噪声。图4-6 接收信号的星座图(a)信噪比为30db时的信号星
23、座图 (b)信噪比为15db时的信号星座图图4-7 不同信噪比条件下接收信号的星座图对比7、 接收端进行FFT变换并将信号进行并-串转换后,对信号进行解调,解调结果如下所示:图4-8 接收端解调信号及其信源信号波形对比(SNR=30db)图4-9 接收端解调信号及其信源信号波形对比(SNR=10db)8、不同信噪比条件下的信号误码率计算及其对比图4-10 不同信噪比条件下的系统误码率分析(2) 实验结果分析 1、信号的串并转换数据传输的典型形式是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可利用的带宽;但在并行数据传输系统中,许多符号被同时传输,减少了那些在串行系统中出现的问题。
24、在OFDM系统中,每个传输符号速率的大小大约在几十bps到几十kbps之间,所以必须进行串并变换,将输入串行比特流转换成为可以传输的OFDM符号。由于调制模式可以自适应调节,所以每个子载波的调制模式是可以变化的,因而每个子载波可传输的比特数也是可以变化的,所以串并变换需要分配给每个子载波数据段的长度是不一样的。在接收端执行相反的过程,从各个子载波处来的数据被转换回原始的串行数据。当一个OFDM下回在多径无线信道中传输时,频率选择性衰落会导致某几组子载波受到相当大的衰减,从而引起比特错误。这些在信道频率响应上的零点会造成在邻近的子载波上发射的信息受到破坏,导致在每个符号中出现一连串的比特错误。与
25、一大串错误连续出现的情况相比较,大多数前向纠错编码(FEC:Forward Error Correction)在错误分布均匀的情况下会工作得更有效。所以,为了提高系统的性能,大多数系统采用数据加扰作为串并转换工作的一部分。这可以通过把每个连续的数据比特随机地分配到各个子载波上来实现。在接收机端,进行一个对应的逆过程来解出信号。这样,不仅可以还原出数据比特原来的顺序,同时还可以分散由于信道衰落引起的连串的比特错误使其在时间上近似均匀分布。这种将比特错误位置的随机化可以提高前向纠错编码FEC的性能,并且系统的总的性能也得到改进。2、系统的调制技术经过QPSK调制的系统在有加性高斯白噪声干扰下的理论
26、误码率公式为。图中用*号表示的红线代表实际仿真出来的误码率,由于仿真的点数只有数量级,所以误码率只能仿真到数量级。由图中看出,两条曲线基本吻合,说明经过QPSK调制的OFDM系统在误码性能上与原始的QPSK调制的系统的误码性能是一致的,即IFFT与FFT变换不改变系统的误码性能。3、系统性能分析系统经过OFDM调制后在多径干扰下的误码性能,上方的线表示系统不经过OFDM调制情况下在多径干扰下的误码性能,由图中可以看出,OFDM调制可以降低多径干扰带来的影响,使误码性能得到改善。在多径干扰下的系统误码特性比加性高斯白噪声干扰下的误码性能要差许多,这主要是因为多径时延引起的码间干扰影响了系统的误码
27、特性。当信噪比比较小的时候,误码特性几乎相同,只有到10db以后,误码率才有所区别,但区别程度不大。还可从图中近一步看出,在多径时延未超出保护间隔的时候,系统误码性能比较接近,虽然误码率会随着多径时延的增大而增大,但增加的幅度很小,而当多径时延大于保护间隔时,系统的误码率要比前两种情况大,而且增加的幅度更大。五、总结与体会目前世界范围内存在有多种数字无线通信系统,但是其中主要包括GSM系统、IS-136 TDMA系统以及IS-95 CDMA系统。其中GSM系统占据全球移动通信市场份额的58%,可以提供2.4k9.6kb/s以及14.4kb/s的电路交换语音业务,还可以通过GPRS和EDGE分别
28、提供144kb/s和384 kb/s的分组交换数据业务。IS-136系统占有全球市场9%的份额,它可以提供9.6 IS-136的电路交换语音和传真业务,其最高数据传输速率可达40k60 kb/s。IS-95系统占有的市场份额是14%,它能够提供可变速率接入,其峰值速率分别可以达到9.6kb/s和14.4kb/s,还可以通过使用蜂窝数字分组数据CDPD(Cellular Digital Packet Data)网络来提供19.2kb/s数据业务。显然,基于支持话音业务的电路交换模式的第二代移动通信系统不能满足多媒体业务的需要。优势:OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方
29、面其有很多优势: (1) OFDM技术在窄带带宽下也能够发出大量的数据,能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约工学院以及朗讯工学院等开始使用,在加拿大WiLAN工学院也开始使用这项技术。 (2) OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载
30、波以保证持续地进行成功的通信.该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。 (3) OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。 (4) OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。 (5) OFDM技术可以有效地对抗信号波形间的干扰,适用于多径环境和
31、衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。 (6) OFDM技术通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。 (7) OFDM技术可使信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。 存在不足:虽然OFDM有上述优点,但是同样其信号调制机制也使得OFDM信
32、号在传输过程中存在着一些劣势:(1)对相位噪声和载波频偏十分敏感这是OFDM技术一个非常致命的缺点,整个OFDM系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI,同样,相位噪声也会导致码元星座点的旋转、扩散,从而形成ICI。而单载波系统就没有这个问题,相位噪声和载波频偏仅仅是降低了接收到的信噪比SNR,而不会引起互相之间的干扰。(2)峰均比过大OFDM信号由多个子载波信号组成,这些子载波信号由不同的调制符号独立调制。同传统的恒包络的调制方法相比,OFDM调制存在一个很高的峰值因子。因为OFDM信号是很多个小信号的总和,这些小信号的相位是由要传
33、输的数据序列决定的。对某些数据,这些小信号可能同相,而在幅度上叠加在一起从而产生很大的瞬时峰值幅度。而峰均比过大,将会增加A/D和D/A的复杂性,而且会降低射频功率放大器的效率。同时,在发射端,放大器的最大输出功率就限制了信号的峰值,这会在OFDM频段内和相邻频段之间产生干扰。(3)所需线性范围宽由于OFDM系统峰值平均功率比(PAPR)大,对非线性放大更为敏感,故OFDM调制系统比单载波系统对放大器的线性范围要求更高。六、主要仿真代码clear all;close all;carrier_count=200;%子载波数symbols_per_carrier=12;%每子载波含符号数bits_
34、per_symbol=4;%每符号含比特数,16QAM调制IFFT_bin_length=512;%FFT点数PrefixRatio=1/4;%保护间隔与OFDM数据的比例 1/61/4GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length 即保护间隔长度为128beta=1/32;%窗函数滚降系数GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度20SNR=10; %信噪比dB%=%=信号产生=baseband_out_length = carrier_count * symbo
35、ls_per_carrier * bits_per_symbol;%所输入的比特数目carriers = (1:carrier_count) + (floor(IFFT_bin_length/4) - floor(carrier_count/2);%共轭对称子载波映射 复数数据对应的IFFT点坐标conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射 共轭复数对应的IFFT点坐标baseband_out=round(rand(1,baseband_out_length)%输出待调制的二进制比特流%=16QAM调制=compl
36、ex_carrier_matrix=qamn16(baseband_out);%列向量complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per_carrier)'%symbols_per_carrier*carrier_count 矩阵figure(1);plot(complex_carrier_matrix,'*r');%16QAM调制后星座图title('16QAM调制后星座图')axis(-4, 4, -4, 4);grid on%=IF
37、FT=IFFT_modulation=zeros(symbols_per_carrier,IFFT_bin_length);%添0组成IFFT_bin_length IFFT 运算IFFT_modulation(:,carriers ) = complex_carrier_matrix ;%未添加导频信号 ,子载波映射在此处IFFT_modulation(:,conjugate_carriers ) = conj(complex_carrier_matrix);%共轭复数映射%=signal_after_IFFT=ifft(IFFT_modulation,IFFT_bin_length,2);
38、%OFDM调制 即IFFT变换time_wave_matrix =signal_after_IFFT;%时域波形矩阵,行为每载波所含符号数,列ITTF点数,N个子载波映射在其内,每一行即为一个OFDM符号%=%=添加循环前缀与后缀=XX=zeros(symbols_per_carrier,IFFT_bin_length+GI+GIP);for k=1:symbols_per_carrier; for i=1:IFFT_bin_length; XX(k,i+GI)=signal_after_IFFT(k,i); end for i=1:GI; XX(k,i)=signal_after_IFFT(
39、k,i+IFFT_bin_length-GI);%添加循环前缀 end for j=1:GIP; XX(k,IFFT_bin_length+GI+j)=signal_after_IFFT(k,j);%添加循环后缀 endend time_wave_matrix_cp=XX;%添加了循环前缀与后缀的时域信号矩阵,此时一个OFDM符号长度为IFFT_bin_length+GI+GIP=660%=OFDM符号加窗=windowed_time_wave_matrix_cp=zeros(1,IFFT_bin_length+GI+GIP);for i = 1:symbols_per_carrierwind
40、owed_time_wave_matrix_cp(i,:) = real(time_wave_matrix_cp(i,:).*rcoswindow(beta,IFFT_bin_length+GI)'%加窗 升余弦窗end %=生成发送信号,并串变换=windowed_Tx_data=zeros(1,symbols_per_carrier*(IFFT_bin_length+GI)+GIP);windowed_Tx_data(1:IFFT_bin_length+GI+GIP)=windowed_time_wave_matrix_cp(1,:);for i = 1:symbols_per_c
41、arrier-1 ; windowed_Tx_data(IFFT_bin_length+GI)*i+1:(IFFT_bin_length+GI)*(i+1)+GIP)=windowed_time_wave_matrix_cp(i+1,:);%并串转换,循环后缀与循环前缀相叠加end%=Tx_data=reshape(windowed_time_wave_matrix_cp',(symbols_per_carrier)*(IFFT_bin_length+GI+GIP),1)'%加窗后 循环前缀与后缀不叠加 的串行信号%=temp_time1 = (symbols_per_carr
42、ier)*(IFFT_bin_length+GI+GIP);%加窗后 循环前缀与后缀不叠加 发送总位数figure (2)subplot(2,1,1);plot(0:temp_time1-1,Tx_data );%循环前缀与后缀不叠加 发送的信号波形grid onylabel('Amplitude (volts)')xlabel('Time (samples)')title('未叠加循环前后缀的OFDM时域波形')temp_time2 =symbols_per_carrier*(IFFT_bin_length+GI)+GIP;subplot(2,
43、1,2);plot(0:temp_time2-1,windowed_Tx_data);%循环后缀与循环前缀相叠加 发送信号波形grid onylabel('Amplitude (volts)')xlabel('Time (samples)')title('叠加循环前后缀的OFDM时域波形')%=加窗的发送信号频谱=symbols_per_average = ceil(symbols_per_carrier/5);%符号数的1/5,10行avg_temp_time = (IFFT_bin_length+GI+GIP)*symbols_per_ave
44、rage;%点数,10行数据,10个符号averages = floor(temp_time1/avg_temp_time);average_fft(1:avg_temp_time) = 0;%分成5段for a = 0:(averages-1) subset_ofdm = Tx_data(a*avg_temp_time)+1):(a+1)*avg_temp_time);%利用循环前缀后缀未叠加的串行加窗信号计算频谱 subset_ofdm_f = abs(fft(subset_ofdm);%分段求频谱 average_fft = average_fft + (subset_ofdm_f/av
45、erages);%总共的数据分为5段,分段进行FFT,平均相加endaverage_fft_log = 20*log10(average_fft);figure (3)subplot(2,1,1)plot(0:(avg_temp_time-1)/avg_temp_time, average_fft)%归一化 0/avg_temp_time : (avg_temp_time-1)/avg_temp_timehold onplot(0:1/IFFT_bin_length:1, -35, 'rd')grid onaxis(0 0.5 -40 max(average_fft)ylabe
46、l('Magnitude (dB)')xlabel('Normalized Frequency (0.5 = fs/2)')title('发送信号频谱')subplot(2,1,2)plot(0:(avg_temp_time-1)/avg_temp_time, average_fft_log)%归一化 0/avg_temp_time : (avg_temp_time-1)/avg_temp_timehold onplot(0:1/IFFT_bin_length:1, -35, 'rd')grid onaxis(0 0.5 -40
47、max(average_fft_log)ylabel('Magnitude (dB)')xlabel('Normalized Frequency (0.5 = fs/2)')title('加窗的发送信号频谱')%=添加噪声=Tx_signal_power = var(windowed_Tx_data);%发送信号功率linear_SNR=10(SNR/10);%线性信噪比noise_sigma=Tx_signal_power/linear_SNR;noise_scale_factor = sqrt(noise_sigma);%标准差sigmanoise=randn(1,(symbols_per_carrier)*(IFFT_bin_length+GI)+GIP)*noise_scale_factor;%产生正态分布噪声序列Rx_data=windowed_Tx_data +noise;%接收到的信号加噪声%=接收信号 串/并变换 去除前缀与后缀=Rx_data_matrix=zeros(symb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外籍学生宿舍建设方案
- 通信基站施工组织设计方案
- 脓毒血症的急救与护理
- 酒店客房多联机系统建设方案
- 医院绩效考核体系方案
- 水利工程土方开挖专项方案
- 实验室用磁力搅拌器市场发展预测和趋势分析
- 卧铺车厢市场需求与消费特点分析
- 2024年实习生工作协议格式
- 酒店行业物资采购管理制度
- 社区护理学(山东联盟)知到章节答案智慧树2023年山东第一医科大学
- 六年级写自己典型事例300字范文(6篇)
- 《马克思主义基本原理》绪论 马克思主义基本原理概论
- 2023年高考作文素材积累:欲得千里驹需搭青云梯、纵浪大化中淡定且从容、因时而变奔赴山海
- 《Python少儿编程》PPT课件(共11章)第二章 Python 编程基础
- 外研版九年级英语上册单元测试卷
- 九年级沪教版 Unit5 Reading Skiing An Unforgettable Experience公开课学案
- DB11T 1763-2020干线公路附属设施用地标准
- 百万英镑英语台词
- 配电箱巡视检查记录表
- 成人氧气吸入疗法考试题
评论
0/150
提交评论