版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、摘要变换工序是合成氨中最重要的工序之一,在合成氨工艺的流程中起着非常重要的作用本次设计为70kt/a合成氨变换工段的工艺设计。本设计采用全低变的工艺流程.。根据有关文献资料,完成物料、热量的计算。并对第一变换炉、第二变换炉、煤气换热器以及变换气换热器等主要设备进行选型计算。并做出了合成氨变换工段全低变的工艺流程图和设备布置图。所得结果基本满足设计要求,工艺流程可行。关键词:合成氨;低温变换;热量衡算;物料衡算AbstractTransformprocessesisoneofthemostimportantprocesses,andiplaysaveryimportantroleintheind
2、ustryofsyntheticammonia.Thetaskisthedesignofshiftprocessin70kt/aNHThelow-temperatureshifttechnologywasadoptedinthiscalculation.Accordingtotherelevantculturalheritagedata,completethecalculationofmaterial,calories.Furthermore,thesizeandtypeoftheequipmentsweredeterminedsuchasheatexchanger,shiftconverte
3、r,etc.Alsodotosynthesizeanalloftheammoniatransformationworksegmentlowcraftflowchartandequipmentschangingsetoutdiagram.Theresultsmeettherequirementsofthedesigntaskwel,thecraftprocesscango.摘要IAbstractII第一章前言11.1 变换气反应原理11.2 CO变换反应化学平衡21.3 CO低温变换催化剂51.3.1 低变催化剂的发展51.3.2 低变催化剂的主要成分51.3.3 催化剂的活性降低和中毒71.4
4、 工艺流程简述8第二章物料衡算及热量衡算102.1 设计条件102.2 CO全变换过程总蒸汽比的计算102.3 第一变换炉催化剂床层物料与热量衡算112.3.1 入第一变换炉催化剂床层汽气比112.3.2 CO平衡变换率及出催化剂床层气体的组成122.3.3 第一变炉热量衡算132.3.4 第一变换炉催化剂层CO变换反应平衡曲线142.3.5 CO在第一变换炉催化剂床层最适宜温度152.3.6 CO在第一变换炉催化剂层变换反应操作线162.4 第二变换炉第一段催化剂层物料及热量衡算172.4.1 第二变换炉第一段催化剂层汽/气比172.4.2 第二变换炉第一段催化剂层CO的平衡转化率计算182
5、.4.3 出口温度校核182.4.4 第二变换炉第一段催化剂热量衡算182.4.5 第二变换炉第一段催化剂床层平衡曲线计算192.4.6 CO在第二变换炉第一段催化剂层最适宜变换温度202.4.7 CO在第二变换炉第一段催化剂层变换反应操作线202.5 第二变换炉第二段催化剂床层物料及热量衡算212.5.1 第二变换炉第二段催化剂层CO的平衡转化率计算222.5.2 第二变换炉第二段催化剂热量衡算222.5.3 平衡温距校核232.5.4 第二变换炉第二段催化剂床层平衡曲线计算242.5.5 CO在第二变换炉第二段催化剂层最适宜变换温度242.5.6 CO在第二变换炉第二段催化剂层变换反应操作
6、线252.6 煤气换热器热量衡算262.7 变换气换热器热量衡算272.7.1 进设备热量计算272.7.2 出设备热量计算28第三章主要设备计算293.1 第一变换炉的计算293.1.1 催化剂用量计算293.1.2 催化剂床层阻力计算303.2 第二变换炉的计算313.2.1 第二变换炉第一段催化剂用量计算313.2.2 第二变换炉第二段催化剂用量计算323.2.3 第二变换炉催化剂床层阻力的计算333.3 煤气换热器的计算353.3.1 设备直径及管数确定363.3.2 设备规格的确定373.3.3 传热系数计算373.3.4 传热面积计算423.3.5 列管长度的计算42主要设备一览表
7、43设计结果及总结44参考文献45致谢46第一章前言合成氨生产常用的原料包括:焦碳、煤、焦炉气、天然气、石脑油和重油。不论以固体、液体或气体为原料,所得到的合成氨原料气中均含有一氧化碳。固体燃料气化所得半水煤气中的一氧化碳含量为28%30%烂类蒸汽转化为12%13%焦炉转化气为11%15%重油部分氧化为44%48%一氧化碳的消除一股分为两次。大部分一氧化碳,先通过变换反应,即在催化剂存在的条件下,一氧化碳与水蒸气作用生成氢气和二氧化碳。通过变换反应,既能把一氧化碳变为易于消除的二氧化碳,同时,又可制得与反应了的一氧化碳相等摩尔的氢,而所消耗的只是廉价的水蒸气。因此,一氧化碳的变换既是原料气的净
8、化过程,又是原料气制造的继续。最后,残余的一氧化碳再通过铜氨液洗涤法、液氮洗涤法或甲烷化法等方法加以清除。变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。目前,变换工序主要有全低变”工艺和中低变”工艺,此次设计运用的是全低变”工艺“全低变”工艺是90年代在我国小合成氨厂开始使用的,是从“中低变”演变而来,使用低温活性较好的B302Q、B303Q等耐硫变换催化剂,各段进口温度均在200C左右。经过几年的发展,随着耐硫低温催化剂的开发利用,“全低变”的工艺和设备不断完善,操作水平也进一部提高,目前“全低变”工艺已进入成熟阶段。该工艺具有蒸汽消耗低、系统阻力小、生产强度大等优点。1.1变换气反
9、应原理合成氨生产需要的原料气是H2和N2,而半水煤气中含有约30%左右的CO,需要将其除去。变换工段的目的就是将半水煤气中的CO除去,在本质上是原料气净化的一个过程。为了将CO除去,工业上采用的方法是:在催化剂存在的条件下,利用较为廉价的水蒸气与CO反应,生成H2和CO2。(1-1)原料气中的一氧化碳与水蒸汽的变换反应可用下式表示:CO+HOC2OtQ此反应为可逆放热反应,反应热为40964J/mol,当开车正常生产后,即可利用其反应热来维持过程的继续进行。在一般情况下,一氧化碳与水蒸汽直接进行反应,其变换反应的速度是很慢的,如果用催化剂催化,则可以加快反应速度,大大有利于变换反应的进行。随着
10、一氧化碳变换反应的进行,伴随着微量的副反应发生,主要有如下几种:(1)甲烷的生成2CO2H2=CH4CO2Q(1-2)CO+3H2=CH4+H2O+Q(1-3)CO2+4H2=CH4+2H2O+Q(1-4)(2)一氧化碳的分解反应2CO=C+CO2+Q(1-5)(3)有机硫的转化反应COS+H2=CO+H2s(1-6)COS+H2O=CO2+H2s(1-7)CS2+2H2O=CO2+2H2s(1-8)1.2CO变换反应化学平衡一氧化碳和水蒸汽的变换反应系可逆反应COH2O=C02H2Q其平衡常数为:(1-9)yC02yH2rCO2rH2Kp;yC0yH2OrCOrH2O式中:yi各组分的摩尔分
11、数r气体的逸度系数KpCO的平衡常数由于小合成氨厂的变换反应多在压力2.0MPa,温度为180250c条件下进行的,其逸度系数接近于1,即:(1-10)rCO2rH2rC0rH2O则式(1-9)可简化为:KpyC02yH2yCOyH2OPc02PH2PCoPH2o(1-11)式中,Pi-各组分的分压由于变换反应是一个放热反应,考虑平衡常数是温度的函数,且随温度的升高而降低。平衡常数与温度关系的表达式很多,数值各不相同,这是由于恒压热容等基础热平衡数据不同所致。本设计可采用下面的公式计算IlgKP185-0.11021lgT0.6218104T-1.060410,T2-2.218(1-12)式中
12、,T温度,K5025.163与二2KP-exp(-0.09361nT1.455510T-2.488710T25.2894)(1-13)在变换范围内,平衡常数也可用下面简化式计算(1-14)4757lnKP=-4.33T式(1-14)在低温下计算出的Kp与式(1-12)及(1-13)相差较大,温度越高误差越小。CO变换反应的化学平衡的影响因素:a.温度温度对变换反应的影响较大:温度升高,反应速度加快。从化学平衡来看,降低反应温度,增加蒸汽用量,有利于反应向生成氢气和二氧化碳的方向进行,可以提高CO平衡转化率。在变换反应的初期,反应物浓度高,提高反应温度,可加快正反应;在变换反应的后一阶段,二氧化
13、碳和氢气的浓度增加,逆反应速度加快,因此,须设法降低反应温度,使逆反应速度减慢,这样可以得到较高的变换率。但降低温度也减慢了反应速度,降低了催化剂的生产能力,应综合考虑。对于一氧化碳含量较高的半水煤气,开始反应时,为了加快反应速度,一般要在较高的温度下进行,而在反应的后一阶段,为了使反应比较完全,就必须使温度降低一些,工业上采取的两段中温变换就是根据这一概念设计确定的。对于一氧化碳含量在2%4%的中温变换气体,只需要在230c左右,用低温变换催化剂进行低温变换。止匕外,反应温度与催化剂的活性有很大的关系,一般工业用的变换催化剂低于某一温度反应便不能正常进行,而高于某一温度也会损坏催化剂,因此一
14、氧化碳变换反应必须在催化剂的适用温度范围内选择合理的工艺条件。b.压力一氧化碳变换反应前后气体的分子数相同,若为理想气体,压力对于反应的平衡没有影响。目前的工业操作条件下:压力4.0MPa压下,温度为200500C时,压力对于变换反应没有显著的影响。但是在较高压力下,反应物浓度增加,分子间的有效碰撞次数增加,可以加快变换反应速度,提高催化剂的生产能力。且各种气体与理想气体有一定的偏差,必须根据各气体组分的逸度计算Kp,因此压力对CO的变换反应有一定的影响。c.蒸汽添加量一氧化碳变换反应为可逆反应,增加蒸汽量可使反应向正方向移动。因此,工业上一般均采用加入一定的过量水蒸气的方法来提高一氧化碳的变
15、换率。实际上,当使用半水煤气为原料,使用中温铁铭催化剂的工艺流程中,一般采用H2O(汽)/CO(气)=(34)/1;在使用铁镁催化剂的工艺流程中,一般采用H2O(汽)/CO(气)=(35)/1。d.二氧化碳浓度从一氧化碳变换反应的方程式来看,如果出去生成的二氧化碳,有利于反应向正方向进行,并使变换反应接近于完成。除去二氧化碳可以采用良种方式:(1)利用碱性氧化物与二氧化碳作用生成碳酸盐,例如:CaOCO2LCaCO3(1-15)或利用碱性氧化物作为催化剂的的一种组分来吸收二氧化碳。由于(1-15)为一放热反应,要对生成的热量采取一定的措施。更重要的是这一反应进行到一定程度后要进行更换催化剂,增
16、加了生产操作的复杂性,因此在实际中很少应用。(2)在两段变换催化剂之间或中变和低变之间,将气体送往脱除二氧化碳装置,然后再进行第二次变换。这种方法相互干扰较少,比较容易实现,但增加了换热和脱除二氧化碳的设备,流程要复杂一些。1.3CO低温变换催化剂1.3.1 低变催化剂的发展随着脱硫技术的进展,烧类蒸汽转化锲催化剂在工业上的广泛应用,以及纯净合成气的制造,特别是在60年代初,透平压缩机在合成氨工业上的出现,大系列化合成氨工艺对原先脱除少量一氧化碳以及二氧化碳的铜碱洗工序,已显的很复杂,气体精制度不能达到现代化工厂的要求(CO+CO29.7222=34222.2Nm3/h初始半水煤气组成见下表2
17、-1。表2-1初始半水煤气组成Table2-1Thecompositionoftheinitialsemi-watergas组分CO2COH2CH4O2N2合计%7.030.822.6100Nm32395.610540.412936.0513.3102.77734.234222.2kmol106.9470.6577.522.94.6345.31527.82.2 CO全变换过程总蒸汽比的计算选用B302Q型催化剂,设第二变炉出口变换气温度为200C,平衡温距为24C,则计算时取变换温度为t=224CoCO和H2O的反应方程式为:COh2o=co2h2设CO变换反应的变换量为C
18、O,则变换反应的平衡常数Kp:Kp(2-1)PCO2PH2(CCO)(D:CO-2O2%)PcoPh2o-(A-CO)(B-CO2O2%)本设计所给条件CO的变换率为99%,则:CO=30.8%99%=30.49%查文献1可知在220c时CO变换的平衡常数Kp=140.96。并由表2-1可知A、C、D的值分别为30.8%、7.0%、37.8%,将A、C、D和Kp的值代入式(2-1)求得:B=75.0O即可知总水气比为75.0/10002.3 第一变换炉催化剂床层物料与热量衡算2.3.1 入第一变换炉催化剂床层汽气比设CO在催化剂床层转化率为60.0%,且O2全部和H2燃烧生成H2O,则CO的反
19、应量4CO为:30.8%X60%=18.48Nm3/100Nm3干半水煤气则CO的总反应量为:34222.2x1848=6324.3Nm3=282.3kmol100设气体出催化剂床层的温度为360C,取平衡温距为20C,则计算所取温度为380C。查文献1知380c时的Kp=14.6,由式(2-1)代入数据可得:146(7.018.48)(37.818.4820.3).一(30.8-18.48)(B-18.4820.3)解上式得即此时的汽气比为入炉蒸汽量入炉湿气的量B=25.7225.72/10002572o34222.22572=8802.2Nm3=393.0kmol100334222.2+8
20、802.2=43024.4Nm=1920.7kmol由此可计算出入炉的湿气组成,结果见下表2-2。表2-2入第一变换炉湿半水煤气组成Table2-2Thecompositionofthewetsemi-watergasintothefirstshiftconverter组分CO2COH2CH4O2H2ON2合计%5.5724.5030.071.190.2420.4617.98100Nm32395.610540412936.0513.3102.779103.17734.243024.4kmol106.9470.6577.522.94.6406.4345.319CO平衡变换率及出
21、催化剂床层气体的组成设360c时的平衡变换率为Xp,360c时的Kp=18.371,代入式(2-1)得:(5.8724.50Xp)(30.0724.50-20.24)18.37)p(24.50-24.50XP)(24.46-24.50Xp20.24),Xp-70.2p则实际变换率为平衡变换率60100%=85.47%70.2由以上计算知实际反应掉的CO的量为_310540.40.6=6324.2Nm出一段催化剂层剩余湿气量334024.4+8802.2-102.7=42723.9Nm8802.2-6324.22102.7=2683.4Nm乘U余CO的量10540.4-6324.2=4216.2
22、Nn342162CO在湿气中含量M100%=9.87%42723.9同理,可求出CO2、H2、CH4、N2、H2O在湿气中的含量,结果见下表2-4。出催化剂层干气体量_334024.46324.2-3102.7=40040.5Nm剩余蒸汽量由以上计算可得出催化剂干气体组成,见下表2-3。Table2-3Theconpositionofthedriedsemi-watergasoutthefirstconverter表2-3出第一变换炉催化剂变换气干气体组成组分H2COCO2CH4N2合计%48.1010.5221.781.2819.32100Nm319260.24216.28719.8513.
23、37734.2400040.5kmol859.8188.2389.322.9345.31787.5表2-4出第一变换炉催化剂变换气湿气组成Table2-4Thecompositionofthewetsemi-watergasoutletthefirstconverter组分H2COCO2CH4N2H2O合计%45.089.8720.411.2018.105.73100Nm319260.24216.28719.8513.37734.22984.242723.9kmol859.8188.2389.322.9345.3133.21907.3(1)第一变换炉内CO变换反应放热量为Qi气体由200C上升
24、到360C,平均温度tm=280C。查文献1知CO变换反应的(TH)=39572kJ/kmol,则由表2-2和表2-4中的数据可求出Qi=(470.6-188.2)39550=1.117107kJ(2)氧气和氢气燃烧放热Q2查文献2可知氧气和氢气燃烧始为484017kJ/kmol,则Q2=4.6484017=2.226106kJ(3)气体温度上升吸热Q3在平均温度285c和平均压力0.92MPa下可查出Cp(N2)=30.39kJ/kmol?KCp(CO2)=46.32kJ/kmol?KCp(O2)=31.78kJ/kmol?KCp(H2)=29.38kJ/kmol?KCp(CO)=30.57
25、kJ/kmol?KCp(CH4)=49.1kJ/kmol?KCp(H2O)=35.59kJ/kmol?K则平均比热容:CP(m)=0.450829.380.098730.570.18130.390.24146.320.01249.10.057335.59=33.84kJ/kmol?K气体吸热Q3=1907.333.84;:t设热损失Q4=3.9106kJ由热平衡方程式Q1Q2=Q3Q4将上述数据代入热平衡方程式知:t=160C。可知道结果与实际所取温度一致,故不需要进行重复计算。2.3.4第一变换炉催化剂层CO变换反应平衡曲线由平衡变换率的计算公式:Pc02PH2(CAXp)(DAXp)Kp=
26、ppcop%。(A-AXp)(B-AXp)可求出各温度下的平衡转化率,结果见表2-5。表2-5第一变换炉C0在各温度下的平衡转化率Table2-5TheequilibriumconversionrateofCOinthefirstconverterT,C200230250270290310330350370400Kp220.9125.787.5062.6546.0034.5426.4720.6616.3913.20Xp,%83.2280.0877.9675.6673.2270.6768.0665.3962.6960.00以200c为例,计算过程如下:在200c时,查表知Kp=220.90由式(
27、2-1)知:pc02PH2(CAXp)(DAXp-202%)Kp=ppcoph2o(A-AXp)(B-AXp2O2%)220.90=pc。21PH2pCOpH2O代入数据得:(5.5324.33Xp)(29.8624.33Xp-20.24)(24.33-24.33XP)(21.01-24.33XP20.24)解上式可得:Xp=0.8322将以上数据作图可得平衡曲线图,见图2-12.3.5CO在第一变换炉催化剂床层最适宜温度查文献可得最适宜温度计算公式为1:(2-3)TemRTeE21 In2E2-E1E1式中,Tm最适宜温度,KTe平衡温度,KR通用气体常数,8.314kJ/kmolE1、E2
28、正、逆反应活化能,kJ/kmolE2-E1=V(-Hr)AHrCO变换反应热,kJ/kmol对于变换反应r=1查文献可知Ei=43340kJ/kmol,在平均温度280c时,由式:H=-10000-0.291T2.84510T2-0.970310上T3代入数据,可得-:HR=39576.2kJ/kmol。CO变换的逆反应活化能E2为E2-E1(-H)=4334039576.2二82916.2kJ当Xp=83.22%时,Te=200+273.2=473.2K将上面的数据代入式(2-3)可得:473.2Tm二8.314473282916.251ln一39576.243340=445.6Ktm=17
29、2.4C。同理,可分别求出各转化率下的最适宜温度,结果见下表2-6。表2-6A变换炉CO转换最适宜温度Table2-6TheoptimaltemperatureforCOinthefirstShiftConverterXp,%83.2280.0877.9675.6673.2270.6768.0665.3962.6960.00Te,K473.2503.2523.2543.2563.2583.2603.2623.2643.2663.2Tm?K445.6473.8492.6511.5530.3549.2568.0586.8605.7624.5tm5C172.4200.6219.5238.3257.1
30、276.0294.83136332.5351.3由以上数据作图可求得最适宜温度曲线,见图2-12.3.6CO在第一变换炉催化剂层变换反应操作线由第一变换炉催化剂变换率及热平衡计算可知入口气体温度200c出口气体温度370c入口CO变换率0出口CO变换率60.0%由此可作出第一变换炉催化剂床层操作线如图2-1所示300987。QQ。6543%,率化转oO21001002003004005平衡曲线T最适宜温度一A操作线2.4第二变换炉第一段催化剂层物料及热量衡算2.4.1 第二变换炉第一段催化剂层汽/气比设在此段CO的总转化率达到88%,可知CO在此段催化剂层的总转化量为3:CO=10540.48
31、8%=9275.56Nm=414.09kmol则知CO在此段催化剂层的转化量为39275.56- 6324.26=2951.3Nm3=131.75kmol根据以上计算可得CO在此段的转化率为2951.30-100%=70.0%4216.2设气体入口、出口温度分别为230C、280C,平衡温距取70C,则出口气体平衡温度为350Co查文献1知此时的Kp=20.66o由前面的计算可知A=9.75、C=20.40D=45.08代入式(2-1)解得B=30.58则可以得到汽气比为30.58/100。此时所需总蒸汽量为30.583(42723.9-2683.4)=12244.4Nm3100则需补充的蒸汽
32、量为_312244.4-2683.4=9561.0Nnf此时总的蒸汽量为342723.9+9561.0=52286.9Nm由以上的计算可求出此时的入炉湿气组成,结果见下表2-7。表2-7入第二变换炉第一段变换气组成Table2-7Thecompositionoftheshiftgasinletthefirstparagraphofthesecondshiftconverter组分H2COCO2CH4N2H2O合计%38.088.4217.421.0315.4624.471003Nm19260.24216.28719.8513.37734.212244.452286.9kmol854.7188.
33、2389.322.9345.3546.72第二变换炉第一段催化剂层CO的平衡转化率计算由出口平衡温度350C,查文献1知Kp=20.66,由公式(2-2)代入数据得:(17,428.42Xp)(38.088.42Xp)20.66二p(8.42-8,42Xp)(24.47-8.42Xp),Xp=58.27%p出口湿气体组成计算如下:CO的量4216.2X(1-0,7)=1264.9Nm3CO2的量8719.8+2951.3=11671.1Nm3H2的量19054.8+2951,3=22211.5Nm3H2O的量12244.42951.3=9293.1Nm3由上面的计算可得出出
34、口湿变换气的组成,结果见下表2-8。表2-8出第二变换炉第一段催化剂变换气组成Table2-7Thecompositionofthegasoutletthefirstparagraphofthesecondshiftconverter组分H2COCO2CH4N2H2O合计%44.382.5323.321.0215.4618.57100Nm322211.51264.911671.1513.37734.29293.152286.9kmol991.656.5521.022.9345.3414.92出口温度校核KpCO2%H2%0.23320.44382222.03CO%H2O%0
35、.02530.1857由上述计算可知与所取Kp相差不大,故不重复计算2.4.4 第二变换炉第一段催化剂热量衡算(1) CO放热Q1设第二变换炉一段内CO变换反应放热量为Q1气体由230c升至280C,平土温度tm=255C,查文献知(-.:H)=39762kJ/kmolQi=39762(188.27=0.6)64.6710kJ(2)气体温度上升吸热Q2湿变换气在平均温度255C,平均压力0.94MPa下,查文献1知Cp(H2)=29.30kJ/kmol?KCp(N2)=29.78kJ/kmol?KCp(CO)=30.00kJ/kmol?KCp(CO2)=45.75kJ/kmol?KCp(CH4
36、)=48.22kJ/kmol?KCp(H2O)=38.96kJ/kmol?KCP(m)=0.228445.750.031830.000.436329.300.010348.220.155629.780.137638.96=34.68kJ/kmolKQ2=2219.234.68At(3)假设热损失Q3=0.8106kJ/kmol由热量平衡得Qi=Q2+Q34.67106Q2=2219.234.68t0.83106t=50C计算温度与出口温度一致,故不需要重复计算2.4.5 第二变换炉第一段催化剂床层平衡曲线计算入此段催化剂床层汽/气比为30.58/100。根据入此段催化剂床层的气体组成,计算各温
37、度下的平衡转化率,结果如表2-9。表2-9CO在第二变换炉第一段催化剂平衡转换率Table2-9TheequilibriumconversionrateofCOinthefirststageofthesecondshiftconverterT,C230250270290310330350Kp125.6887.5062.6546.0034.5426.4720.66Xp,%90.4586.8884.5477.7272.2366.2659.91以230C为例进行计算。在230c时查文献1可知此时的Kp=125.68,把数据彳t入式(2-1)可得:Pc02PH2(17.428.42Xp)(38.088
38、.42Xp)125.6=-一一=-PcoPh2o(8.42-8.42Xp)(24.47-8.42Xp),XP=90.45由表中数据作图即可求得平衡曲线,见图2-2o2.4.6 CO在第二变换炉第一段催化剂层最适宜变换温度最适宜温度可由式(2-3)计算,查文献1知B302Q型催化剂的Ei=43340kJ,在平均温度255C时:(-AH)=39762kJ/kmolWJE2=E1r(-.:H)=43340-39762=83102kJ/kmol由式(2-3)代入数据可计算出最适宜温度,其结果见表2-10o表2-10CO在第二段变换炉第一段催化剂最适宜转化温度Table2-10Theoptimaltem
39、peratureforCOinthefirststageofthesecondshiftconverterXp,%90.4586.8884.5477.7272.2366.2659.91Te,K503.2523.2543.2563.2583.2603.2623.2Tm,K470.9488.4505.8523.1540.3557.4574.4tm,C197.7215.2232.6249.9267.1284.2301.2由以上数据作图即可求得此段最适宜温度曲线,见图2-2。2.4.7 CO在第二变换炉第一段催化剂层变换反应操作线由一段催化剂变换率及热平衡计算结果可知入口气体温度230c出口气体温度2
40、80c入口变换率60.0%2-2出口变换率62.5%(总变换率85%)由以上数据即可作出此段催化剂床层的操作线,见图温度,c.一段平衡曲线-.一段最适宜温度一段操作线2.5第二变换炉第二段催化剂床层物料及热量衡算由前面的计算可知在CO的变换过程中须加入的总蒸汽量为83.96334222.2=28733.0Nm100第一变换炉催化剂层及第二变换炉第一段催化剂层加入的蒸汽量分别为8802.2Nm3、9561.0Nm3。在此段催化剂层须加入的蒸汽量为328733.0-8802.2-9561.0=10369.8Nn3。由此可知进入此段催化剂层的湿气组成,结果见表2-11。表2-11入第二变换炉第二段催
41、化剂层变换气组成Table2-11Thecompositionoftheshiftgasinletthesecondparagraphofthesecondshiftconverter组分H2COCO2CH4N2H2O合计%35.222.0118.510.8112.2731.18100Nm322211.51264.911671.1513.37734.219662.963060.5kmol991.656.5521.022.9345.3877.92815.2可知CO在此段变换量为310540.40.99-(10540.4-1264.9)=1159.5Nm=51.76kmolCO在此段的转化率为11
42、595-100%=91.67%12第二变换炉第二段催化剂层CO的平衡转化率计算由出口平衡温度200C,查文献2.5.2第二变换炉第二段催化剂热量衡算CO放热Q1设第二变换炉二段内CO变换反应放热量为Qi:出此段催化剂床层的温度200C,进口温度175C,平均温度tm=187C,查知道此时的Kp=220.90,由公式(2-2)代入数据得:(18.512.01Xp)(35.222.01Xp)220.90;(2.01-2.01Xp)(31.18-2.01Xp),Xp=95.68%由上面的计算可得出出口湿变换气的组成,结果见表2-12。表2-12出第二变换炉催化剂层湿变换气组成Tab
43、le2-12Thecompositionofthewetshiftgasoutletthesecondstageofthesecondshiftconverter组分出COCO2CH4N2H2O合计%37.180.1720.350.8212.3029.34100Nm323371.0105.412830.6513.37734.218503.463060.5kmol10572.822.9345.3826.02815.2出变换炉的干变换气组成见表2-13。表2-13出第二变换炉第二段催化剂层干变换气组成Table2-13Thecompositionofthedriedshiftgasoutletthesecondparagraphofthesecondshiftconverter组分H2COCO2CH4N2合计%52.450.2428.781.1317.34100Nm323165.6105.412830.6513.37734.244557.1kmol1044.24.7572.822.9345.31989.1文献川-H40260kJ/kmQi=40260(70.64.7)2.6510kJ(2)气体温度上升吸热Q2气体由175C上升至200C,在平均温度tm=187C,压力1.0MPa下,查Cp(H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行的策划与感悟
- 2025年度电子产品全球配送与售后维护服务合同4篇
- 2025年度智能环保型厂房出售买卖协议书4篇
- 2025年度文化产业厂房购置及运营合作协议4篇
- 个人借贷抵押协议标准打印版2024年适用版B版
- 2025年度高科技厂房租赁合同(含知识产权保护)标准样本4篇
- 个人专项资金贷款合同范本:2024年版B版
- 2024科技创新项目引荐服务合作合同一
- 2025年度供应链金融合同履行的信用增级担保服务3篇
- 2024版特定担保书增补协议上诉文件版B版
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 外配处方章管理制度
- 2025年四川长宁县城投公司招聘笔试参考题库含答案解析
- 骆驼祥子-(一)-剧本
- 《工程勘察设计收费标准》(2002年修订本)
- 全国医院数量统计
- 【MOOC】PLC技术及应用(三菱FX系列)-职教MOOC建设委员会 中国大学慕课MOOC答案
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 泌尿科主任述职报告
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 第六次全国幽门螺杆菌感染处理共识报告-
评论
0/150
提交评论