版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 5 Knowledge RepresentationXiu-jun GONG (Ph. D)School of Computer Science and Technology, Tianjin U http:/ OutlinepKnowledge & Knowledge representationpMethodology for KRnLogicnProduction SystemnSemantic NetnFramenScriptnObject-OrientedpSummaryKnowledge What is Knowledge ?InformationKnowledge
2、Knowledge = FactsRulesControl Strategy +(sometimes ) FaithsData Signal Taxonomy of KnowledgepFacts: declarative knowledgenthief(john), likes(john, wine)pRules: procedural knowledgenmay_steal(X, Y) if thief(X) and likes(X, Y)pControl Strategy: meta, super knowledgenreasoning strategynnote formnsearch
3、 strategyAttributes of KnowledgepRange :Special GeneralpIntend :Expository InstructionalpCertainty :Certain UncertainpContain/Conflict :Contain Conflict(in faith)Knowledge RepresentationpKnowledge representation is an issue that arises in both cognitive science and AI. nIn cognitive science it is co
4、ncerned with how people store and process information. nIn AI, the primary aim is to store knowledge so that programs can process it and achieve the verisimilitude of human intelligence. nAI researchers have borrowed representation theories from cognitive science. Some issues in KRpHow do people rep
5、resent knowledge? pWhat is the nature of knowledge and how do we represent it? pShould a representation scheme deal with a particular domain or should it be general purpose? pHow expressive is a representation scheme? pShould the scheme be declarative or procedural? Methodology of KRpLogicpProductio
6、n SystempSemantic NetpFramepScriptPropositional LogicpPropositional logic uses true statements to form or prove other true statements. nRepresentation (syntax): How to represent a proposition.nReasoning (algorithm): How to create or prove new propositions. pRepresentation of propositional logicnA pr
7、opositional symbol and connectives (!, *, +, =, )nExample:pC = “Its cold outside” ; C is a propositionpO = “Its October” ; O is a propositionpIf O then C ;if its October then its cold outsidePredicate LogicpSame connectives as propositional logicpPropositions have structure: Predicate/Function + arg
8、uments. nR, 2 ; Terms. Terms are not individuals, not propositionsnRed(R), (Red R) ; A proposition, written in two waysn(southOf UnicornCafe UniHall) ;a propositionn(+ 2 2) ; Term, since the function + ranges over numberspQuantifiers enable general axioms to be writtenn(forall ?x (iff (Triangle ?x)
9、(and (polygon ?x) (numberOfSides ?x 3)Easy to inferenceLogic as a KR language padvantages nWith a semantics nExpressiveness pDisadvantages nInefficient nUndecidability nUnable to express procedural knowledge nUnable to do default reasoning nNo abductionProduction System (1)pProduction rules are one
10、of the most popular and widely used knowledge representation languages pProduction rule system consists of three components nworking memory contains the information that the system has gained about the problem thus far. nrule base contains information that applies to all the problems that the system
11、 may be asked to solve. ninterpreter solves the control problem, i.e., decide which rule to execute on each selection-execute cycle. pUsed both for KR and Problem solving systemProduction System (2)pAdvantages: nNaturalness of expression nModularity nRestricted syntaxnAbility to Represent Uncertain
12、KnowledgepDisadvantages nInefficient nLess expressive Semantic Nets pIntuition base:nAn important feature of human memory is the high number of connections or associations between the different pieces of information contained in it. pThere are two types of primitive nNodes correspond to objects, or
13、classes of objects, in the world nLinks are unidirectional connections between nodes and correspond to relationships between these objects Semantic Nets pMajor problem with semantic nets is that although the name of this knowledge representation language is semantic nets, there is not, ironically, c
14、lear semantics of the various network representations. For the above example, nit can be interpreted as the representation of a specific bird named Tweety, or nit can be interpreted as a representation of some relationship between Tweety, birds and animals. Common used linkspIS-ApPART-OFpMODIFILES:
15、on, down, up, bottom, moveto,pLink types are set up for specific domain knowledgeExamples of Semantic Net (1)pRepresent a tableleg4leg1leg3tableleg2topSupportis-aAnalysis of Semantic NetpFor a particular Domain, you nmake up a set of link-typesncreate a set of nodes nconnect them together nascribe m
16、eaningpWrite Programs to manipulate the knowledgenLispnCLExamples of Semantic Net (2)pMy car is tan and Johns car is greencarcar1tancar2greenIjohnownerownercolorcoloris-ais-aInference in a Semantic Net (1)pInheritancenthe is-a and instance-of representation provide a mechanism to implement this.nInh
17、eritance also provides a means of dealing with default reasoningACABCIS-AIS-AIS-Aclydebirdbirdflyclyde flyIS-AcancanInference in a Semantic Net (2)pIntersection searchnThe notion that spreading activation out of two nodes and finding their intersection finds relationships among objects.nMany advanta
18、ges including entity-based organization and fast parallel implementation.n However very structured questions need highly structured networksInference in a Semantic Net (3)carcar1tancar2greenIjohnIcar1what?caris-ais-ais-a owner owner ownercolorcolorcolorWhat color is the car1?tanFrame representationp
19、Frame: a knowledge representation technique which attempts to organize concepts into a form which exploits interrelatioships and common beliefspframe-based KR is analogous to object-oriented programming; the difference is the entities encodedpA frame is similar to a record data structure or database
20、 record:pFrame has slot names and slot fillers, and usually arranged in a hierarchyStructure of frame (1)Frame name slot: value , value, . . . slot: facet: value, value, facet: value, value, Frame: printer superset: office-machine subset: laser-printer, ink-jet-printer energy-source: wall-outlet mak
21、er: Epson date: 1-April-2003 Structure of frame (2)pFrames often allowed slots to contain procedures.n“if-needed” procedures, run when value needednif-added” procedures, run when a value is added (to update rest of data, or inform user).Class and instance framesp(frame) instance: representing” lowes
22、t-level” object; a single object or entityp(frame) class: describes different frames (either instances or classes)pevery instance has an “is-a” link, pointing to its classnpossibly more than one “is-a”Example of frames (1)Frame Name:Properties:BirdColourWingsFliesUnknown2TrueFrame Name:Class:Propert
23、ies:TweetyBirdColourWingsFliesYellow1FalseClass frameInstance frameExample of frames (2)PandaType: AnimalColour: Black and whiteFood: EatFunc: .Name:Height:Age: 0SiblingBambooType: PlantGrowFunc: .Location: Height: 2JennyName: JennyHeight: 1.6Age: 5Sibling: VickyName: VickyHeight: 0.7Age: 1Sibling:
24、Capability of frame representationpAdvantagesnDomain knowledge model reflected directlynSupport default reasoningnEfficientnSupport procedural knowledgepDisadvantagesnLack of semanticsnExpressive limitationsScripts for KRpRather similar to frames: uses inheritance and slots; describes stereotypical
25、knowledge, (i.e. if the system isnt told some detail of whats going on, it assumes the default information is true), but concerned with events.pSomewhat out of the mainstream of expert systems work. More a development of natural-language-processing research. Definition of scriptspA script is a remem
26、bered precedent, consisting of tightly coupled, expectation-suggesting primitive-action and state-change frames Winston, 1992pA script is a structured representation describing a stereotyped sequence of events in a particular context Luger, Stubblefield,1998Why scripts? (1)pBecause real-world events
27、 do follow stereotyped patterns. Human beings use previous experiences to understand verbal accounts; computers can use scripts instead.pBecause people, when relating events, do leave large amounts of assumed detail out of their accounts. People dont find it easy to converse with a system that cant
28、fill in missing conversational detailWhy scripts? (2)pScripts predict unobserved events.pScripts can build a coherent account from disjointed observations.pApplicationsnThis sort of knowledge representation has been used in intelligent front-ends, for systems whose users are not computer specialists. nIt has been employed in story-understanding and news-report-understanding systems.Components of ScriptspScript namenEntry conditions:nRolesnPropsnScene 1nScene 2nnResultsScript: resta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年永修县总医院面向社会公开招聘工作人员备考题库及答案详解一套
- 2026年数据通信科学技术研究所招聘备考题库及参考答案详解一套
- 2026年西安高新一中沣东中学招聘备考题库带答案详解
- 2026年杭州市丁蕙第二小学编外人员招聘备考题库完整参考答案详解
- 企业员工绩效考核评价制度
- 2026年用友数智化应用工程师招聘备考题库附答案详解
- 大理护理职业学院关于招募2026年春季学期职业教育银龄教师的备考题库附答案详解
- 企业员工培训与考核评估制度
- 企业内部审计制度
- 南宁市五象新区第四实验小学2025年招聘数学顶岗教师备考题库及参考答案详解
- 2025年时事政治试题库及答案(共550题)
- 机动车检测站可行性研究报告-建设机动车检测站可行性报告
- 周围性瘫痪的护理常规
- 商品毛利率管理制度
- 电能质量技术监督培训课件
- 电子制造行业数字化转型白皮书
- 浙江昌明药业有限公司年产94.5吨苯硫磷胺、50吨西格列汀、50吨恩格列净、54吨利伐沙班、50吨赖诺普利原料药精烘包项目环境影响报告书
- 输电线路工程施工安全管理及风险控制方案
- 肿瘤患者双向转诊管理职责
- 电力企业突发事件应急处置案例分析
- 福建省漳州市2024-2025学年高一上学期期末教学质量检测历史试卷(含答案)
评论
0/150
提交评论