




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、WORD最短路径问题(刁老师数学)问题概述最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径算法具体的形式包括:确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径全局最短路径问题 - 求图中所有的最短路径问题原型“将军饮马”,“造桥选址”,“费马点”涉与知识“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”出题背景角、三角形、菱形、矩形、正方形、梯形
2、、圆、坐标轴、抛物线等解题思路找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查十二个基本问题问题1作法图形原理在直线l上求一点P,使PA+PB值最小连AB,与l交点即为P两点之间线段最短PA+PB最小值为AB问题2“将军饮马”作法图形原理在直线l上求一点P,使PA+PB值最小作B关于l的对称点B连A B,与l交点即为P两点之间线段最短PA+PB最小值为A B问题3作法图形原理在直线、上分别求点M、N,使PMN的周长最小分别作点P关于两直线的对称点P和P,连PP,与两直线交点即为M,N两点之间线段最短PM+MN+PN的最小值为线段PP的长问题4作法图形原理在直线、上分别求点
3、M、N,使四边形PQMN的周长最小分别作点Q 、P关于直线、的对称点Q和P连QP,与两直线交点即为M,N两点之间线段最短四边形PQMN周长的最小值为线段PP的长问题5“造桥选址”作法图形原理直线,在、,上分别求点M、N,使MN,且AM+MN+BN的值最小将点A向下平移MN的长度单位得A,连AB,交于点N,过N作NM于M两点之间线段最短AM+MN+BN的最小值为AB+MN问题6作法图形原理在直线上求两点M、N(M在左),使,并使AM+MN+NB的值最小将点A向右平移个长度单位得A,作A关于的对称点A, 连AB,交直线于点N,将N点向左平移个单位得M两点之间线段最短AM+MN+BN的最小值为AB+
4、MN问题7作法图形原理在上求点A,在上求点B,使PA+AB值最小作点P关于的对称点P,作PB于B,交于A点到直线,垂线段最短PA+AB的最小值为线段PB的长问题8作法图形原理A为上一定点,B为上一定点,在上求点M,在上求点N,使AM+MN+NB的值最小作点A关于的对称点A,作点B关于的对称点B,连AB交于M,交于N两点之间线段最短AM+MN+NB的最小值为线段AB的长问题9作法图形原理在直线l上求一点P,使的值最小连AB,作AB的中垂线与直线l的交点即为P垂直平分上的点到线段两端点的距离相等0问题10作法图形原理在直线l上求一点P,使的值最大作直线AB,与直线l的交点即为P三角形任意两边之差小
5、于第三边AB的最大值AB问题11作法图形原理在直线l上求一点P,使的值最大作B关于l的对称点B作直线A B,与l交点即为P三角形任意两边之差小于第三边AB最大值AB问题12“费马点”作法图形原理ABC中每一角都小于120,在ABC求一点P,使PA+PB+PC值最小所求点为“费马点”,即满足APBBPCAPC120以AB、AC为边向外作等边ABD、ACE,连CD、BE相交于P,点P即为所求两点之间线段最短PA+PB+PC最小值CD精品练习ADEPBC1如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
6、 ABC3 D2如图,在边长为2的菱形ABCD中,ABC60,若将ACD绕点A旋转,当AC、AD分别与BC、CD交于点E、F,则CEF的周长的最小值为( )A2BCD43四边形ABCD中,BD90,C70,在BC、CD上分别找一点M、N,使AMN的周长最小时,AMN+ANM的度数为( )A120 B130 C110 D1404如图,在锐角ABC中,AB4,BAC45,BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是5如图,RtABC中,C90,B30,AB6,点E在AB边上,点D在BC边上(不与点B、C重合),且EDAE,则线段AE的取值围是6如图,AOB30
7、,点M、N分别在边OA、OB上,且OM1,ON3,点P、Q分别在边OB、OA上,则MPPQQN的最小值是_(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即RtABC中,C90,则有)7如图,三角形ABC中,OABAOB15,点B在x轴的正半轴,坐标为B(,0)OC平分AOB,点M在OC的延长线上,点N为边OA上的点,则MAMN的最小值是_8已知A(2,4)、B(4,2)C在轴上,D在轴上,则四边形ABCD的周长最小值为,此时 C、D两点的坐标分别为9已知A(1,1)、B(4,2)(1)P为轴上一动点,求PA+PB的最小值和此时P点的坐标;(2)P为轴上一动点,求的值最大时P点的坐标;(3)CD为轴上一条动线段,D在C点右边且CD1,求当AC+CD+DB的最小值和此时C点的坐标;10点C为AOB一点(1)在OA求作点D,OB上求作点E,使CDE的周长最小,请画出图形; (2)在(1)的条件下,若AOB30,OC10,求CDE周长的最小值和此时DCE的度数11(1)如图,ABD和ACE均为等边三角形,BE、CE交于F,连AF,求证:AF+BF+CFCD;(2)在ABC中,ABC30,AB6,BC8,A,C均小于120
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作合同范本供参考
- 2025安置房买卖合同书范本
- 2025全国合同范本
- 湖南省郴州市多校联考2024-2025学年高三下学期4月综合性模拟考试英语试题(含解析无听力音频有听力原文)
- 广东省广州市2024-2025学年高一下学期期中考试英语试题
- 2025年疆维吾尔自治区阿勒泰地区中考二模历史试题(含答案)
- 湖北省恩施市龙凤初中2024-2025学年八年级下学期期中道德与法治考试题(无答案)
- 环保设备融资租赁合同协议
- 电子软件租赁合同协议
- 现价出售房屋合同协议
- 《企业财务决算报表》课件
- 图书馆读书会服务合同
- 排水工程(下)重点
- 基于STM32单片机的智能停车场车位管理系统的设计与实现
- 《土地管理法解析》课件
- 大数据开发工程师招聘面试题与参考回答(某世界500强集团)2025年
- 养老院查房巡视管理制度
- 按摩店技师免责协议书
- 声音与情绪管理
- 直播中控转正述职报告
- 史宁中:义务教育数学课标(2022年版)解读
评论
0/150
提交评论