![冯恩信电磁场与电磁波 课后习习题答案_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-5/7/7fa26436-bac0-4265-b007-80b0c03dee04/7fa26436-bac0-4265-b007-80b0c03dee041.gif)
![冯恩信电磁场与电磁波 课后习习题答案_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-5/7/7fa26436-bac0-4265-b007-80b0c03dee04/7fa26436-bac0-4265-b007-80b0c03dee042.gif)
![冯恩信电磁场与电磁波 课后习习题答案_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-5/7/7fa26436-bac0-4265-b007-80b0c03dee04/7fa26436-bac0-4265-b007-80b0c03dee043.gif)
![冯恩信电磁场与电磁波 课后习习题答案_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-5/7/7fa26436-bac0-4265-b007-80b0c03dee04/7fa26436-bac0-4265-b007-80b0c03dee044.gif)
![冯恩信电磁场与电磁波 课后习习题答案_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-5/7/7fa26436-bac0-4265-b007-80b0c03dee04/7fa26436-bac0-4265-b007-80b0c03dee045.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题 已知,求:(a) A和B 的大小(模); (b) A和B的单位矢量;(c) ;(d) ;(e)A和B之间的夹角;(f) A在B上的投影。解:(a) A和B 的大小 (b) A和B的单位矢量 (c) (d) (e)A和B之间的夹角 根据得 (f) A在B上的投影 如果矢量A、B和C在同一平面,证明A·(BC)=0。 证明:设矢量A、B和C所在平面为平面 已知A=、B和C,证明这三个矢量都是单位矢量,且三个矢量是共面的。证明:1)三个矢量都是单位矢量 2)三个矢量是共面的 ;,当时,求。解:当时, 所以 证明三个矢量A、B和C形成一个三角形的三条边,并利用矢积求此三角形的面积。证明
2、 :因为 所以三个矢量A、B和C形成一个三角形此三角形的面积为 P点和Q点的位置矢量分别为和,求从P点到Q点的距离矢量及其长度。 解:从P点到Q点的距离矢量为从P点到Q点的距离为 求与两矢量A和B都正交的单位矢量。解:设矢量与两矢量A和B都正交,则 (1) (2)(1)+(2) 得 (3)(1)+3(2)得 (4)如果矢量是单位矢量,则 所以 将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。解:在圆柱坐标系中在圆球坐标系中 将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。解:根据 (1)得又因为 (2)利用(2)式可得 将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。解:
3、根据 (1)得 又因为(2)得 = 计算在圆柱坐标系中两点和之间的距离。解:两点和之间的距离为 空间中同一点上有两个矢量,取圆柱坐标系,A,B,求:(a) A+B ; (b) AB; (c) A和B的单位矢量; (d) A和B之间的夹角; (e) A和B的大小; (f) A在B上的投影。解:(a)(b) (c) (d) A和B之间的夹角 (e) A和B的大小 (f) A在B上的投影 = 矢量场中,取圆柱坐标系,已知在点矢量为A,在点矢量为B;求:(a)A+B ; (b) A·B;(c) A和B之间的夹角。解:转换到直角坐标系 (a)A+B(b) A·B(c) A和B之间的夹
4、角 计算在圆球坐标系中两点和之间的距离及从P点到Q点的距离矢量。解:根据圆球坐标与直角坐标的关系 空间中的同一点上有两个矢量,取圆球坐标系,A,B,求:(a) A+B ; (b) A·B; (c) A和B的单位矢量; (d) A和B之间的夹角; (e) A和B的 大小; (f) A在B上的投影。解:(a)A+B (b) A·B(c) A和B的单位矢量 ;(d) A和B之间的夹角(e) A和B的 大小 (f) A在B上的投影 求的梯度。解: 求标量场在点(1,1,1)沿方向的变化率。解: 所以 由,利用圆柱坐标和直角坐标的关系,推导。解:在直角坐标系中(1) (2)(3)(4
5、)(5)由(2)、(3)式可得(6)(7)(8)(9)由(1)(5)式得而再由(6)(9)式可得 = 求的梯度。解: 由,利用圆球坐标和直角坐标的关系,推导。解: 求的梯度。解: 求梯度,其中为常数。解: 在圆球坐标系中,矢量场为,其中为常数,证明矢量场对任意闭合曲线的环量积分为零,即 。证明:根据斯托克思定理:=0所以 =0 证明(1);(2)。证明:(1) (2) 由A 推导。解: 图11由推导和。解: (1) 由得 (2) 计算下列矢量场的散度a) b) c) 解:a) b) c) 计算散度,其中为常矢量。解: 由推导。解: 已知 a) (r) b) (r)= c) (r)=求。解:a)
6、b) c) 求矢量场穿过由确定的区域的封闭面的通量。解:解法1:为半径为1的圆弧侧面;为侧平面;下端面;上端面。 =解法2:由(A)推导A 。解:1)设,为边长为和的,中心在的矩形回路 2)设,为边长为和的,中心在的矩形回路 3)设,为边长为和的,中心在的矩形回路 因此 计算矢量场的旋度解:计算解: 已知,计算解:对于任意矢量,若=0 证明矢量场E=既是无散场,又是无旋场。证: 已知E=,求E和E。解: 证明。解: 已知计算解:根据亥姆霍兹定理 其中 因为,因此;对于 所以 已知计算解:根据亥姆霍兹定理 其中 因为,因此;对于 所以第2章习题2-1.已知真空中有四个点电荷,分别位于(1,0,0
7、),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。解: 2-2.已知线电荷密度为的均匀线电荷围成如图所示的几种形状,求P点的电场强度。 a b c题2-2图解:(a) 由对称性(b) 由对称性(c) 建立坐标系如图所示,两条半无限长线电荷产生的电场为半径为a的半圆环线电荷产生的电场为总电场为2-3.真空中无限长的半径为a的半边圆筒上电荷密度为,求轴线上的电场强度。解:在无限长的半边圆筒上取宽度为的窄条,此窄条可看作无限长的线电荷,电荷线密度为,对积分,可得真空中无限长的半径为a的半边圆筒在轴线上的电场强度为 题2-3图 题24图2-4.真空中无限长的宽度
8、为a的平板上电荷密度为,求空间任一点上的电场强度。解: 在平板上处取宽度为的无限长窄条,可看成无限长的线电荷,电荷线密度为,在点处产生的电场为其中 ;对积分可得无限长的宽度为a的平板上的电荷在点处产生的电场为2-5.已知真空中电荷分布为 r为场点到坐标原点的距离,a,b为常数。求电场强度。解:由于电荷分布具有球对称性,电场分布也具有球对称性,取一半径为 r 的球面,利用高斯定理 等式左边为 半径为 r 的球面内的电量为因此,电场强度为 2-6.在圆柱坐标系中电荷分布为r为场点到z轴的距离,a为常数。求电场强度。解: 由于电荷分布具有轴对称性,电场分布也具有轴对称性,取一半径为 r ,单位长度的
9、圆柱面,利用高斯定理 等式左边为半径为r 、高为1的圆柱面内的电量为因此,电场强度为 2-7. 在直角坐标系中电荷分布为 求电场强度。解: 由于电荷分布具有面对称性,电场分布也具有面对称性,取一对称的方形封闭面,利用高斯定理,穿过面积为 S的电通量为,方形封闭面内的电量为因此,电场强度为 2-8. 在直角坐标系中电荷分布为 求电场强度。题28图解: 由于电荷分布具有面对称性,电场分布也具有面对称性,取一对称的方形封闭面,利用高斯定理,穿过面积为 S的电通量为,方形封闭面内的电量为 因此,电场强度为 2-9.在电荷密度为(常数)半径为a的带电球中挖一个半径为b的球形空腔,空腔中心到带电球中心的距
10、离为c(b+c<a)。求空腔中的电场强度。题2-9图解:由电场的叠加性,空腔中某点的电场等于完全均匀填充电荷的大球在该点的电场与完全均匀填充负电荷的小球在该点的电场之和。利用高斯定理,可求得完全均匀填充电荷的大球在该点的电场为完全均匀填充负电荷的小球在该点的电场为 所以,空腔中某点的电场为 为从球心指向空腔中心的矢量。2-10.已知电场分布为 求电荷分布。题210图解:由得 2-11. 已知在圆柱坐标中,电场分布为 其中为常数。求电荷分布。解: 由,得在, (在圆柱坐标系)在,因此 在r=a,r=b有面电荷.电荷面密度为 2-12.若在圆球坐标系中电位为 求电荷分布。解:由得体电荷密度对
11、求拉普拉斯运算得 因此 下面计算r=a,r=b的分界面上的面电荷。面电荷密度2-13.分别计算方形和圆形均匀线电荷在轴线上的电位。 (a) (b)解:(a) 方形均匀线电荷在轴线上的电位方形每条边均匀线电荷的电位其中 方形均匀线电荷在轴线上的电位为(b) 圆形均匀线电荷在轴线上的电位2-14.计算题2-5给出的电荷分布的电位。解: 题2-5给出的电荷分布的电场为 由电位的定义,电位为 对于r>a 对于r<a 2-15 四偶极子电荷与圆球坐标位置为,求处的电位。解:其中 ;= 2-16.已知电场强度为,试求点(0,0,0)与点(1,2,1)之间的电压。题216图解:解法1:从点(0,
12、0,0)到点(1,2,1)的路径取(0,0,0)到点(1,0,0)-+ 点(1,0,0)到点(1,2,0)-+点 (1,2,0)到点(1,2,1)解2 2-17.已知在球坐标中电场强度为,试求点与点之间的电压。解:从点到点的路径取到点 +点 到点+点到点2-18.已知在圆柱坐标中电场强度为,试求点与点之间的电压。解:点到点之间路径取到点 +点到点 2-19.半径为a,长度为L的圆柱介质棒均匀极化,极化方向为轴向,极化强度为(为常数)。求介质中的束缚电荷。解: (1)介质中的束缚电荷体密度为(2) 介质表面的束缚电荷面密度为在圆柱介质棒的侧面上束缚电荷面密度为零;在上下端面上束缚电荷面密度分别为
13、.2-20.求上题中的束缚电荷在轴线上产生的电场。解: 上下端面上束缚电荷产生的电场 由例题,圆盘形电荷产生的电场为式中a 为圆盘半径.对上式做变换,可上端面上束缚电荷产生的电场为 同理,做变换,可下端面上束缚电荷产生的电场为 上下端面上束缚电荷产生的总电场为 2-21.半径为a的介质球均匀极化,求束缚电荷分布。解: (1)介质中的束缚电荷体密度为 (2) 介质表面的束缚电荷面密度为2-22.求上题中束缚电荷在球中心产生的电场。解:介质表面的束缚电荷在球心产生的电场在介质球表面取半径为宽度为的环带,可看成半径为,电荷线密度为的线电荷圆环,例中给出了线电荷圆环的电场,对积分得 题2-22图2-2
14、3.无限长的线电荷位于介电常数为的均匀介质中,线电荷密度为常数,求介质中的电场强度。解: 设无限长的线电荷沿 z轴放置, 利用高斯定理,容易求得介质中的电场强度为 为场点到线电荷的距离.2-24. 半径为a的均匀带电球壳,电荷面密度为常数,外包一层厚度为d、介电常数为的介质,求介质内外的电场强度。解:由于电荷与介质分布具有球对称性,取半径为 r的球面,采用高斯定理上式左右两边分别为 由此得 因为,所以 2-25.两同心导体球壳半径分别为a、b,两导体之间介质的介电常数为,内、外导体球壳电位分别为。求两导体球壳之间的电场和球壳面上的电荷面密度。解:设内导体带电荷为 q,由于电荷与介质分布具有球对
15、称性,取半径为 r的球面,采用高斯定理,两导体球壳之间的电场为 两导体球壳之间的电压为得出 所以球壳面上的电荷面密度为 2-26 两同心导体球壳半径分别为a、b,两导体之间有两层介质,介电常数为、,介质界面半径为c,内外导体球壳电位分别为。求两导体球壳之间的电场和球壳面上的电荷面密度以及介质分界面上的束缚电荷面密度。解:设内导体带电荷为 q,由于电荷与介质分布具有球对称性,取半径为 r的球面,采用高斯定理可得,两导体球壳之间的电场为 两导体球壳之间的电压为 2-27 圆柱形电容器,内外导体半径分别为a、b,两导体之间介质的介电常数为,介质的击穿场强为,求此电容器的耐压。解:设圆柱形电容器长度为
16、L,内导体电量为,利用高斯定理,可得内外导体间的电压为 因此 所以电场可表示为 内导体表面的电场为 所以如果介质的击穿场强为,则电容器的耐压为 2-28已知真空中一内外半径分别为a、b的介质球壳,介电常数为,在球心放一电量为q的点电荷。(1)用介质中的高斯定理求电场强度;(2)求介质中的极化强度和束缚电荷。解:(1)由题意,电场具有球对称结构。采用高斯定理,在半径为r的球面上由得 (2) 这里 2-29 某介质的介电常数为,和均为常数,若介质中的电场强度为恒值且只有分量,证明 。证: 2-30 .有三层均匀介质,介电常数分别为,取坐标系使分界均平行于xy面。已知三层介质中均为匀强场,且,求。解
17、:因为三层介质中均为匀强场,设第二、三层介质中的电场强度分别为;由边界条件可得,由边界条件, 可得 ,即;所以 ,2-31 .半径为a的导体球中有两个半径均为b的球形腔,在其中一个空腔中心有一个电量为q的点电荷在该球形空腔中心,如图所示,如果导体球上的总电量为0,求导体球腔中及球外的电场强度。解:(1)在有点电荷的空腔中,由于对称性,电场强度为,为从空腔中心指向该空腔中场点的位置矢量。(2)在另一没有点电荷的空腔中,由于静电屏蔽,该空腔中的电场强度为零。(3)在导体球外,由于导体球为等位体,除了导体球面上外,导体球外没有电荷,因此导体球外电场具有球对称性,且导体球上的电量为q,所以导体球外的电
18、场强度为 r为导体球心到场点的距离。 题图题图2-32 .同轴圆柱形电容器内外半径分别为a、b,导体之间一半填充介电常数为的介质,另一半填充介电常数为的介质。当电压为V时,求电容器中的电场和电荷分布。解:设同轴电容器长度为,内导体上的电量为q,在内外导体之间取半径为 r的圆柱面,利用高斯定理在两个半柱面上,电场强度分别相等,上式变为 由介质边界条件,可得 内外导体之间的电压为 由此得,从而得 电荷分布为介质侧;介质侧2-33 z>0半空间为介电常数为的介质,z<0半空间为介电常数为的介质,当(1)电量为q的点电荷放在介质分界面上;(2)电荷线密度为的均匀线电荷放在介质分界面上。求电
19、场强度。解:(1)电量为q的点电荷放在介质分界面上以点电荷为中心作以半径为r的球,利用高斯定理 设上、下半球面上的电位移矢量分别、,根据对称性,在上、下半球面上大小分别相等,有 =根据边界条件,因此 (2)电荷线密度为的均匀线电荷放在介质分界面上 以线电荷为轴线作以半径为r单位长度的圆柱面,利用高斯定理 设上、下半柱面上的电位移矢量分别、,根据对称性,在上、下半柱面上大小分别相等,有 =根据边界条件,因此 2-34.面积为A,间距为d的平板电容器电压为V,介电常数为厚度为t的介质板分别按如图a、b所示的方式放置在两导电平板之间。分别计算两种情况下电容器中电场及电荷分布。题图解:(a)设导体板之
20、间介质与空气中的电场分别为、,那么、满足关系 (边界条件)求解以上两式得 ; 根据导体表面上的边界条件,在上、下导体表面上的电荷面密度为 (b) 由图可见,导体板之间介质与空气中的电场为 根据导体表面上的边界条件,在上、下导体板与空气的界面上的电荷面密度为 在上、下导体板与介质的界面上的电荷面密度为 2-35 在内外半径分别为和之间的圆柱形区域内无电荷,在半径分别为和的圆柱面上电位分别为和0。求该圆柱形区域内的电位和电场。解:由电荷分布可知,电位仅是的函数,电位满足拉普拉斯方程,方程为解微分方程得 利用边界条件 得 , 因此 2-36在半径分别为和的两同轴导电圆筒围成的区域内,电荷分布为,为常
21、数,若介质介电常数为,内导体电位为V,外导体电位为0。求两导体间的电位分布。解:由电荷分布可知,电位仅是的函数,电位满足泊松方程 解微分方程得 利用边界条件 得 , 2-37 两块电位分别为0和V的半无限大的导电平板构成夹角为的角形区域,求该角形区域中的电位分布。 c b a 题图 题 图解:由题意,在圆柱坐标系中,电位仅是的函数,在导电平板之间电位方程为其通解为 由边界条件 ,得所以, 2-38 .由导电平板制作的金属盒如图所示,除盒盖的电位为V外,其余盒壁电位为0,求盒内电位分布。解:用分离变量法,可得电位的通解为 利用边界条件,可求出系数 (m、n为奇数) (m、n为偶数)2-39 在的
22、匀强电场中沿z轴放一根半径为a的无限长导电圆柱后,求电位及电场。题图解:由分离变量法,无限长导电圆柱外的电位的通解为 (1)设,当时的电位等于无导电圆柱的电位,即 (2)要使式(1)的电位在时等于式(2),可得到系数 ,再由导体界面的边界条件得 因此,电位的特解为 2-40 .在无限大的导电平板上方距导电平板h处平行放置无限长的线电荷,电荷线密度为,求导电平板上方的电场。解:用镜像法,导电平板的影响等效为镜像位置的一个电荷线密度为-的线电荷, 导电平板上方的电场为 式中、分别为线电荷及其镜像线电荷到场点的距离矢量。2-41 由无限大的导电平板折成的角形区,在该角形区中某一点()有一点电荷q,用
23、镜像法求电位分布。解:如图将空间等分为8个区,在每个区中以原来的导电面为镜面可以依次找到镜像位置,原电荷的位置为(),另外7个镜像电荷在圆柱坐标系中的坐标为:(),(),(),(),(),(),()。镜像电荷为对于场点,电荷到场点的距离矢量为 ;则场点的电场为 题2-41图题2-42图2-42 半径为a,带电量为Q的导体球附近距球心f处有一点电荷q,求点电荷q所受的力。解:点电荷q 受到的力(场)有两部分,一部分等效为镜像电荷的力,另一部分等效为位于球中心的点电荷的力。由镜像法,镜像电荷的大小和位置分别为 由于包围导体球的总电量为Q,所以位于位于球中心的点电荷=Q-;因此点电荷q 受到的力为
24、2-43 内外半径分别为a、b的导电球壳内距球心为d(d<a)处有一点电荷q,当(1)导电球壳电位为零;(2)导电球壳电位为V;(3)导电球壳上的总电量为Q;分别求导电球壳内外的电位分布。题2-43图解:(1)导电球壳电位为零由于导电球壳电位为零,导电球壳外无电荷分布,因此导电球壳外的电位为零。导电球壳内的电位的电位由导电球壳内的点电荷和导电球壳内壁上的电荷产生,而导电球壳内壁上的电荷可用位于导电球壳外的镜像电荷等效,两个电荷使导电球壳内壁面上的电位为零,因此镜像电荷的大小、距球心的距离分别为;导电球壳内的电位为 其中、分别为场点与点电荷及镜像电荷的距离,用圆球坐标表示为 (2)导电球壳
25、电位为V 当导电球壳电位为V时,从导电球外看,导电球面是等位面,且导电球外的电位是球对称的,其电位满足 利用边界条件得 导体球壳内的电位可看成两部分的叠加,一部分是内有点电荷但球壳为零时的电位,这一部分的电位同前;另一部分是内无点电荷但球壳电位为V时的电位,这一部分的电位为V。因此导电球壳电位为V时,导电球壳内的电位为 其中、分别为场点与点电荷及镜像电荷的距离。(3)导电球壳上的总电量为Q当导电球壳上的总电量为Q时,从导电球外看,导电球面是等位面,且导电球外的电位是球对称的,导电球壳内的总电量为Q+q,其电位满足导电球壳上的电位为同上得,导电球壳内的电位为 2-44 无限大导电平面上有一导电半
26、球,半径为a,在半球体正上方距球心及导电平面h处有一点电荷q,求该点电荷所受的力。题2-44图解:要使导体球面和平面上的电位均为零,应有三个镜像电荷,如图所示。三个镜像电荷的电量和位置分别为点电荷q所受的力为三个镜像电荷的电场力,即 力的正方向向上。2-45无限大导电平面上方平行放置一根半径为a的无限长导电圆柱,该导电圆柱轴线距导电平面为h,求导电圆柱与导电平面之间单位长度的电容。解:如果无限长导电圆柱上有电荷线密度,导电平面可用镜像位置的线电荷等效,镜像电荷线密度为-。由导体圆柱的镜像法可求得导体圆柱的电位,那么,单位导体圆柱与导电平面之间的电容为题2-45图2-46 z>0半空间为介
27、电常数为的介质,z<0半空间为介电常数为的介质,在界面两边距界面为h的对称位置分别放置电量分别为和的点电荷。分别计算两个点电荷所受得力。解:利用镜像法,计算z>0半空间的场时,原来的问题可等效为图2-46(b),计算z<0半空间的场时,原来的问题可等效为图2-46(c)。这样上半空间的电位可表示为 式中为到场点的距离,为的镜像位置的电荷到场点的距离;下半空间的电位可表示为 式中为到场点的距离,为的镜像位置的电荷到场点的距离。利用边界条件,和得 由此得 和所受的斥力分别为 (a) (b) (c)题2-46图2-47.两同心导体球壳半径分别为a、b,两导体之间介质的介电常数为,求
28、两导体球壳之间的电容。解:设内导体带电荷为 q,由于电荷与介质分布具有球对称性,取半径为 r的球面,采用高斯定理,两导体球壳之间的电场为 两导体球壳之间的电压为 两导体球壳之间的电容为 2-48 两同心导体球壳半径分别为a、b,两导体之间有两层介质,介电常数为、,介质界面半径为c,求两导体球壳之间的电容。解:设内导体带电荷为 q,由于电荷与介质分布具有球对称性,取半径为 r的球面,采用高斯定理可得,两导体球壳之间的电场为 两导体球壳之间的电压为两导体球壳之间的电容为 2-49 面积为A,间距为d的导电平板之间放置介电常数为,厚度为t的介质板,如图a、b所示。分别计算两种情况下导电平板之间的电容
29、。题2-49图解:(a)设导体板之间介质与空气中的电场分别为、,那么、满足关系 (边界条件)求解以上两式得 ; 根据导体表面上的边界条件,在上、下导体表面上的电荷面密度为 电容为 (b) 由图可见,导体板之间介质与空气中的电场为 根据导体表面上的边界条件,在上、下导体板与空气的界面上的电荷面密度为 在上、下导体板与介质的界面上的电荷面密度为 电容为 2-50 两块沿方向无限延伸的导电平板夹角为,与和的圆柱面相截,两板之间的电压为V,。忽略边缘效应,求两块板间的电位分布,电场,以及单位长度的电容。题图解:在圆柱坐标系中,电位只和有关,在两块导电平板之间此方程的通解为 利用边界条件,得 电场强度为
30、 板上单位长度的电量为板上单位长度的电容为 2-51 真空中半径为a的导体球电位为V,求电场能量。解:用两种方法求解。1) 用电位求电场能量 2) 用电场强度求电场能量导体球内的电场强度为零,导体球外的电场强度为电场能量为2-52 .圆球形电容器内导体的外半径为a,外导体的内半径为b,内外导体之间填充两层介电常数分别为、的介质,界面半径为c,电压为V。求电容器中的电场能量。解:设圆球形电容器内导体上的电荷为 q,由高斯定理可求得在内外导体之间 从而可求得内外导体之间的电压为圆球形电容器的电容为 电场能量为 2-53 长度为d的圆柱形电容器内导体的外半径为a,外导体的内半径为b,内外导体之间填充
31、两层介电常数分别为、的介质,界面半径为c,电压为V。求电容器中的电场能量。解:设圆柱形电容器内导体上的电荷为q,用高斯定理,在内外导体之间 内外导体之间的电压为 内外导体之间的电容为 电场能量为 2-54 两个点电荷电量均为,放在介电常数为的介质中,间距为,求互位能。解: 两个点电荷的互位能为将一个点电荷从无限远移到和另一个间距为处外力做的功 2-55 两尺寸为a×a的平行导电平板之间距离为d,带电量分别为,当将介电常数为的介质板插入导电板之间深度为x时,分别求介质板所受的电场力。题 图解:设空气填充部分和介质填充部分导电平板上的电荷密度分别为、由导体边界条件得,;由介质边界条件得或
32、,因此 空气填充部分和介质填充部分导电平板上的电量分别为,。由及得平行导电平板之间的电场能量为 由虚功原理,对于常电荷系统,介质所受的沿x方向电场力为 第3章习题3-1 半径为的薄圆盘上电荷面密度为,绕其圆弧轴线以角频率旋转形成电流,求电流面密度。解:圆盘以角频率旋转,圆盘上半径为处的速度为,因此电流面密度为3-2 在铜中,每立方米体积中大约有个自由电子。如果铜线的横截面为,电流为。计算1) 电流密度; 2) 电子的平均漂移速度;解:1)电流密度 2) 电子的平均漂移速度, 3-3 一宽度为传输带上电荷均匀分布,以速度匀速运动,形成的电流,对应的电流强度为,计算传输带上的电荷面密度。解:电流面
33、密度为 因为 所以 3-4 如果是运动电荷密度,是运动电荷的平均运动速度,证明:证:如果是运动电荷密度,是运动电荷的平均运动速度,则电流密度为 代入电荷守恒定律得3-5 由的铁制作的圆锥台,高为,两端面的半径分别为和。求两端面之间的电阻。解:用两种方法(1)如题图所示题图,(2)设流过的电流为,电流密度为电场强度为 电压为 3-6 在两种媒质分界面上,媒质1的参数为,电流密度的大小为,方向和界面法向的夹角为;媒质2的参数为。求媒质2中的电流密度的大小、方向和界面法向的夹角,以及界面上的电荷面密度。解:根据边界条件,媒质2中的电流密度和界面法向的夹角为 , 3-7 同轴电缆内导体半径为,外导体半
34、径为,内外导体之间有两层媒质。内层从到,媒质的参数为;外层从到,媒质的参数为;求(1) 每区域单位长度的电容;(2) 每区域单位长度的电导;(3) 单位长度的总电容;(4) 单位长度的总电导。解: 内外导体之间的两层媒质是非理想的,那么设同轴电缆内、外导体之间单位长度的漏电流为那么在半径为的圆柱面上电流均匀,电流密度为 电场强度为 第一层的电压为 第二层的电压为 第一层单位长度的电导为 第二层单位长度的电导为 单位长度的总电导为 利用静电比拟第一层单位长度的电容为 第二层单位长度的电容为 单位长度的总电容为 3-8 在上题中,当同轴电缆长度为,内外导体之间的电压为,利用边界条件求界面上的电荷面密度。解: 由上题, 因此 3-9 两同心导体球壳,内导体球壳半径为,外导体球壳半径为。两同心导体球壳之间填充两层媒质,内层从到,媒质的参数为;外层从到,媒质的参数为;求同心导体球壳(1) 每区域的电容;(2) 每区域的电导;(3) 总电容;(4) 总电导。解: 内外导体之间的两层媒质是非理想的,那么设同心导体球壳之间的漏电流为 那么在半径为的圆球面上电流均匀,电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PB-22-N-5-Hydroxypentyl-3-carboxyindole-metabolite-生命科学试剂-MCE-1773
- L-Glutamic-acid-ammonium-生命科学试剂-MCE-7975
- 1-Octadecyl-lysophosphatidic-acid-PA-O-18-0-0-0-生命科学试剂-MCE-8369
- 2025年度绩效合同签订与履行指南
- 二零二五年度未签合同员工劳动仲裁应对措施及赔偿协议
- 二零二五年度物业与业主之间绿化赔偿合作协议
- 2025年度烟酒店员工培训与职业发展合同
- 柴油发电机组技术协议
- 施工日志填写样本防雷工程施工
- 小学语文人教一年级上册识字2《日月明》教学设计
- 充电桩知识培训课件
- 2025年七年级下册道德与法治主要知识点
- 2025年交通运输部长江口航道管理局招聘4人历年高频重点提升(共500题)附带答案详解
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读
- 广东省广州市2025届高三上学期12月调研测试(零模)英语 含解析
- 偏瘫足内翻的治疗
- 药企质量主管竞聘
- 信息对抗与认知战研究-洞察分析
- 心脑血管疾病预防课件
- 手术室专科护士工作总结汇报
- 2025届高三听力技巧指导-预读、预测
评论
0/150
提交评论