




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、boost 升压电路工作原理boost 升压电路是一种开关直流升压电路, 它可以是输出电压比输入电压高。 基本电路图见图一:假定那个开关(三极管或者 mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。0nVin-=7-=7Voutelecfansom电的威彼也Figure
2、士 BAMtConvenerChflivPlu?e放电过程如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为 0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。FisuieBoostConvertrDischargePhase说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可
3、以在电容两端得到高于输入电压的电压。toffFigure4:Inducts*CurrentFigure4:Inducts*Current一些补充 1AA 电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).1 .电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).2 整流管大都用肖特基,大家一样,无特色,在输出 3.3V 时,整流损耗约百分之十.3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过 0.2-0.3V,单只做不到就多只并联.4 最
4、大电流有多大呢?我们简单点就算 1A 吧,其实是不止的.由于效率低会超过 1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了.以上是书本上没有直说的知识,但与书本知识可对照印证.开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关Inductorcurrent-L断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.
5、尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。具体计算已知参数:输入电压:12V-Vi 输出电压:18V-Vo输出电流:1A-Io输出纹波:36mV-Vpp 工作频率:100KHz-f1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd
6、),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为 Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值 Lx 时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值 Lx 时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取 L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*delta
7、I,I2=Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故 ESR 可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3 个 33uF/25V 陶瓷电容并联 4:磁环及线径:查找磁环手册选择对应峰值电流 I2=1.92A 时磁环不饱和的适合磁环IrmsA2=(1/3)*(I1A2+I2A2-I1*I2),参数带入,irms=1.6A按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI
8、 整流管压降:Vd两种降压升压电路原理图2011年11月15日11:06来源:电子发烧友网作者:小兰我要评论(0)图显示两种降压升压电路,可在输入电压可能大于或小于输出电压的情形下使用。这些电路与前述两种降压拓扑有相同的折冲特点,与电流侦测电阻与门极驱动的位置有关。图 2 的降压升压拓扑,显示接地参考的闸极驱动。此拓扑需要位准移位电流侦测讯号,不过反向的升压降压拓扑则具有接地参考的电流侦测及位准移位闸极驱动。如果控制 IC 与负输出有关,且电流侦测电阻与 LED 进行交换,即可利用有效的方式配置反向升压降压拓扑。只要适当控制 IC,即可直接测量输出电流,也可以直接驱动 MOSFETBUCK-B
9、OOST9寸口像寸口像 看看&C番林番林友友求 DC-DCDC-DC降压电路原理及设计要点?DC-DCDC-DC 升压与降压电路简介DC/DCDC/DC 转换器电路的各种特性(效率、纹波、负载瞬态响应等)可根据外设元件的变更而变更,尽量在各种制约条件下,设计出最接近要求规格的 DC/DCDC/DC 转换器电路。1 1、 DC/DDC/DC C 转换的基本工作原理最基本的基本型 DC/DDC/DC C 转换器电路为升压和降压电路 1 1)升压电路FETFET 为 ONON 时的电路图3ND0OGND在 FETFET 为 ONON 的时间里在 L L 积蓄电流能。虚线表示的电流路径虽是微小的漏电流
10、,但会使轻负载的效率变差。FETFET 为 OFFOFF 时的电路图在 FETFET 为 OFFOFF 时,L L 要保持 OFFOFF 前的电流值,相当于在输入回路增加了一个“电源”。由于线圈的左端被强制性固定于 VIN,VIN,因此输出 VOUTVOUT 勺电压要大于 VIN,VIN,即升压电路原理。由此,FETFET 的 ONON 时间越长(FETFET 的触发占空比 D D 越大),L L 里积蓄的电流能越大,越能获得电源功率,于是升压就越高。但是,FETFET 的 ONON 时间太长的话,给输出侧供电的时间就极为短暂,FETFET 为ONON 时的损失也就增大,变换效率变差。因此,通
11、常要限制占空比的最大值,不超过适宜的占空比 d2 2)降压电路FETFET 为 ONON 时的电路图在 FETFET 为 ONON 的时间里,L L 积蓄电流能的同时为输出供电。虚线表示的电流路径虽是微小的漏电流,但会使轻负载的效率变差。FETFET 为 OFFOFF 时的电路图L L在 FETFET 为 OFFOFF 时,L L 要保持 OFFOFF 前的电流值,使 SBDSBD 为 ONON 此时,由于线圈的左端被强制性地降到 0V0V 以下,VOUTVOUT 勺电压下降,即降压电路原理。由此,FETFET 的 ONON 时间长 L L 里积蓄的电流能越大,越能获得大功率电源,降压的幅度越
12、小。降压时,由于 FETFET 为 ONON 时也要给输出供电,所以不需要限制占空比的最大值。2 2、DC/DCDC/DC 转换电路的设计要点设计要点:(1)(1)稳定工作(=(=不会因异常振动等误动作、烧损、过电压而损坏(2)(2)效率大输出纹波小(4)(4)负载瞬态响应好这些设计指标可通过变更 DC/DCDC/DC 转换器 ICIC 和外设元件得到某种程度的改善。3 3、开关频率的选择DC/DCDC/DC 专换器 ICIC 具备固有的开关频率,频率的不同会对各种特性产生影响。开关频率低频高频最大效率大小效率最大时的输出电流轻负载轻负载重负载重负载纹波大小响应速度慢快以 XC9237A18C
13、(1.2MHz)XC9237A18C(1.2MHz)和 XC9237A18D(3MHNXC9237A18D(3MHN 为例表明开关频率与效率的关系。测试电路图(降压型 DC-DQDC-DQ, ,如下图所示。CIN:10pF,CL:10pF,L=4.7pHCIN:10pF,CL:10pF,L=4.7pH(NR3015T-4R7M,Topr=25CNR3015T-4R7M,Topr=25CXC9237A18CXC9237A18C(振荡频率 1.2MHz1.2MHz)开关频率与效率的关系,如下图所示:XC9237A18DXC9237A18D(振荡频率 3MHz3MHz 开关频率与效率的关系,如下图所
14、示:效率最大的电流值不同是因为不同的开关频率适合的感应系数值也不同的缘故。对于结构相同的线圈,感应系数越大直流电阻越增加,重负载时的损失增加,由此,效率最大的电流值越是低频的越会向轻负载侧移动。相反,频率高则因 FETFET 的充放电次数增加和 ICIC 自身的静态消耗电流增大,3MHz3MHz 产品比 1.2MHz1.2MHz 产品在轻负载时的效率大幅度变差。综合来看,可知 1.2MHz1.2MHz 产品的效率峰值大,效率最大的输出电流值峰值小。此外,PFMPFM 工作时,轻负载时的频率都进一步下降,效率明显得到改善。3 3、FETFET 的选择RDSDrain-sourceON-Resis
15、tanceRDSDrain-sourceON-ResistanceRDSRDS 弓 I I 起的损失:RDSRDS 可以看成是 FETFET 的漏源极间电阻成分,因而会发热而损失能量,负载越大其损失越是增大。因此,重负载时减少 RD*1RD*1 起的损失效果较好。CISSCISS:InputCapacitanceInputCapacitanceCISSCISS 引起的损失:CISSCISS 可以看成是 FETFET 的栅源极问充放电时被丢弃的功率。驱动电压和开关频率越大损失就越大,由于重负载时和轻负载时损失值基本相同,所以会使轻负载时的效率大幅度变差。因此,轻负载时减少 CISSCISS 引起
16、的损失对提高效率的效果较好。虽然 RDSffiCISSRDSffiCISS 都是越小损失也越小,但因 RDSffiCISSRDSffiCISS 成反比关系,改善损失大的一方效果更好。一股电压额定值定为使用电压的 1.51.5 倍2 2 倍,RDSffiCISSRDSffiCISS 引起的损失较小。FET 参数设计要点电气特性CISS重视轻负载时效率;cissd、RDS重视重负载时效率;RDS 一小绝对最大额定值VDS升压时; 大约输出电压的 2 倍降压时; 大治输入电压的瑞VGS升压时;大约 VDD 的 2 倍降压时 E 大约输入电压的泄ID升压时;大为输入电流的 2降压时:大约输出电流的甯输
17、入电流二输出(负载)电流 x x 输出电压+输入电压+效率效率未知时,可姑且升压时采用 70%70%降压时采用 8080 啾计算测试实例:更换 FET,FET,测试效率,FETFET 的参数规格如下表所示:项目电气特性绝对最大值FETRDS(mG)CISS(pF)VDS(V)VGS(V)ID(A)IXP152A11E5200160-302007XP162A11CO110280-3020-25XP132A11A155680-3020-5XC9220cXC9220c093093 的测试电路:TrRIN:10PWVLCDRH127=2狙22UH)XP162A11E5XP162A11C0XP132A1
18、1A1CM22FCDD-T1FCECEXCMOC期RF61B33(MS17RF82S180KQRSENr。2酬口050voursvGNDO-GNO测试的效率图:入电流过大引起发热的危险状态因而,为了在 L L 值大的线圈流经大电流,4 4、线圈的选择线圈引起的损失表现为线圈的绕线电阻 RDCffiRDCffi 铁氧体磁心产生的损失等。开关频率不同的话,最佳 L L 值也不同。因为线圈的电流与 FETFET 的 ONON 时间成正比,与 L L 值成反比。对于 2MHz2MHz 左右的开关频率,可以认为线圈的大部分损失是RDCRDC 引起的损失,首先应选择 RDRD。、的线圈。如果为了减小 RD
19、CRDC 而选择 L L 值过小的线圈的话,在 FETFET 为 ONON 的时间内电流值过大,FETFET、SBDSBD 线圈产生的热损失变大,效率下降。而且,因电流增加,纹波也增大。相反,如果 L L 值过大的话,RDCRDC 变大,不仅重负载时的效率变差,而且铁氧体磁心发生磁饱和,L L 值急速减少,这样就不能发挥出线圈的性能,陷形状上必须有一定程度的大小,以避免磁饱和综上所述,相对于线圈的外形尺寸和效率两个方面,适当的 L L 值已被限定,如下表所小:jjfen条标?!1:依L值开儿嫉筝I-检出仪代标范0业鼠【,负假30kHz.50kfk330MH220PHiQOuH100kHz220
20、uH100uHnPH180kHz100MH17HH22PHSOOkHz17uH22uHIOMH500Hlz33uh15MH6.600kH222uH10uHI.7nHQOOUIz10MHt7nH13nH,泗工3&K丸2NH2MHz2.2uH.3灿2.3pH1.5PH1.OdH款定电淹升上约最大珀入电沌的?3倍阳K时大约最大输附咆泣的L5?格实例:XC9104D093XC9104D093(升压)电路只变更了 L L 值后的效率和纹波。测试电路如下:VIN=3.0VM12.L 值与效率的关系(升儿时:XC9101D093)1IC18实例:XC9220A093XC9220A093(降压)电路只变更了
21、L L 值后的效率和纹波。测试电路如下:RIN182LCDRH127-20(22j/H|双盘但例盟50VOUT:5V/YYYXVWDJRFB1MN1区MJG3M517XP1的EXP1&2All3XP1SM.1IA1.即跄际然京47wFONDL:VLF1C045T(L:VLF10O45T122uH、334H.47H)CL22fr::CL:22UFlr:2SJ6I6l*l15.Lffi 与效率的关系(降压时:XC9220Ao93)10000百二LLL宜岩VN=12V1001000OutptitCiiTfwitlOlfFmA)CLTi11Tr图 6L 值与数波的关系(降压时:XC92204093)5
22、 5、SBDSBD 的选择SBDSBD 的损失为正向热损失 VFXIFVFXIF 和反向漏电流 IRIR 引起的热损失的合计值。因此,选择 VFVF、IRIR 都小的产品比较理想。但是,VFVF 与 IRIR 成反比关系,-般要视负载电流而选用。VFVF 在重负载时大,考虑到 IRIR 与负载无关为一定的值,所以轻负载时选择IRIR 小的产品对提高效率的效果较好,重负载时选择 VFVF 小的产品效果较好,选择 SBDSBD 的要点见下表:5,$Fe叠邕FN二12M1W1001DEO1DODO依嘉?#CgiMHfOdT(nA)电气特性VF轻负戟时:IR-小IF?重负期出MFT小绝对最大额定值VR
23、M升任时工大约输出电压的 2 倍以上降压时;大约输入电压的 2 倍以上IFM升压时二大约输入电流的 2 倍以上隆 15 时大门输出电流的 1.5 倍以,上实例:比较两个 SBDSBD 在轻重负载时的效率。与 XBS203VXBS203V1717 相比,XBS204S17XBS204S17 的 VFVF 大 IRIR 小,轻负载时的效率好,重负载时的效率差。下表是详细参数:电气特性绝对最大颤定值W(IF=2A)IR(VR=20V)VRMIFMXBS203V170.35V150pA30V2AXBS204S170.465V2.5|JA40Vl2A测试电路和效率曲线如下:CIHIOJF6 6、CLCL
24、 的选择CLCL 越大则纹波越小,但过分大的话,电容器的形状也大,成本提高VINWOCLCL 由所需的纹波大小而定。以 10mV-40mV10mV-40mV 的纹波大小为目标,升压和降TOUT5WrORN1QOTr?SJ616RFB-1工ocmqVIN-9OVXBS20GV174gWICO1COO秘出电源FIE3OGND压 CLCL 值参考下表:升压:CLCL 值为表中值乘以升压比1 输出电流陶瓷电容OS锂电容铝电解电容0mA-300inA20pF22pF47pF100pF+2.2pF(陶瓷)300inA-600inA30pF47pF94 听150pF+22pF(陶瓷)600mA-900mA4
25、0pF100pF15O|JF220|.iF+47pF(陶瓷)900mA-2A50pF150pF220|JF470MF+47pF(陶瓷)降压:CLCL 值为表中值乘以降压比输出电流陶瓷电容OS锂电容专吕电解电容0mA-300mA10pF15pF22pF47pF+22pF(陶逢)300mA-600rriA20pF22pF33|JFl00pF+2,2pF(陶瓷)&OOmA-90Ol71A20pF33pF47|JFlOOpF+47|JF(陶瓷)900mA-1.2A30pF47pF6BpF220pF+4.7pF(陶瓷)纹波与 ESRESR 成正比,与电容值成反比。以下是测试电路和纹波与 CLCL 的关系
26、图:DIFH3CDRHOOZe220101001000由电流=I0LTEU注:铝电解电容时,没有并联的陶瓷电容的话,ESRESR 过大难以获得输出电流。7 7、CINCIN 的选择虽然不及 CLCL 对输出稳定性的影响大,但 CINCIN 也是电容值越大、ESRESR 越小则输出稳定性越好,纹波也越小。大到某种程度,降低输出纹波的效果会变小,从防止对输入侧的电磁干扰EMIEMI 的意义上说,电容值应从 CLCL 的一半左右开始探讨较好。CINCIN 不会因 ESRESR 太小而输出振荡,所以 ESRESR 越低越好。实例:CINCIN 与纹波的关系,测试电路如下:V1N-3.0V-1Joooo
27、OJooooO86428642m m一三事圣%小.nnminni?!CINCIN 值变化的输入侧纹波,见下图:101001000蝴出电MhIEIIDAI8 8、RFB1,RFB1,和 RFB2RFB2 的选择使用 FBFB(反馈)产品时,RFB1RFB1、RFB2RFB2 用于决定输出电压,对同一输出电压有时可考虑多种组合。此时选择 RFB1+RFB2=150QRFB1+RFB2=150Q500kQ500kQ 比较妥当这里成为问题的是轻负载时的效率和重负载时的输出稳定性。因为流向 R RFB1FB1、RFB2RFB2 的电流没有被作为输出功率使用,而视作 DC/DCDC/DC 转换器的损失,所
28、以要想提高轻负载时的效率的话,要将 RFB1RFB1、RFB2RFB2 设定得大一些(RFB1RFB1+RFB21M+RFB21M)左右)。而要想提高重负载时的瞬态响应的话,则要做好轻负载时的效率差的准备,将 RFB1RFB1、RFB2RFB2 设定得比标准值小 1 1 位数,使 FBFB 端子的电压稳定性提高即可。9 9、CFBCFB 的选择CFBCFB 是纹波反馈调整用电容器,该值也会影响负载瞬态响应140204020。CFBCFB 过小:电压恢复到恒定状态的时间短,但负载变重时电压急剧下降;CFBCFB 过大:负载变重时的瞬间电压下降虽小,但电压恢复到恒定状态的时间长。在特别的情况下,重
29、负载时会出现从 CFBCFB 反馈到 FBFB 端子的纹波的影响过大,输出不稳定的情况。出现这种情况时,不连接 CFBCFB 有时能使工作稳定实例:测试电路如下:GNDRIM10。UN1九VOUT:LCDRW127*220(22H)RSENCL:47F+SDXBS304S17RFB218KQGND3加加F390pFIQOOpFXC9220CO93图24,工。9220893负载瞬态响应(,HOmA02OOmA,g=39pF)Taki?ihL8V4.7V200mAOmA1.62V12.19600mslOOmVM100下A5.0VVOUTIOVTVOUTIOITQdoooi二力,0010国二51)刚
30、初季挑触外6CD0ZZ63X-93M.suioogeLz|nV0眄)储AZIASiA6frAO9AISnoiLTOA求电容降压限流电路工作原理?电容降压工作原理发起投票|删除电容降压的工作原理 2009 年 04 月 27 日星期一 13:25电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在 50Hz 的工频条件下,一个 1uF 的电容所产生的容抗约为 3180 欧姆。当 220V 的交流电压加在电容器的两端,则流过电容的最大电流约为 70mA。虽然流过电容的电流有 70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则
31、流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个 1uF 的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个 110V/8W 的灯泡与一个 1uF 的电容串联,在接到 220V/50HZ 的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为 110V/8W 的灯泡所需的电流为 8W/110V=72mA,它与 1uF 电容所产生的限流特性相吻合。同理,我们也可以将5W/65V 的灯泡与 1uF 电容串联接到 220V/50Hz 的交流电上,灯泡同样会被点亮,而不会被烧毁。因为 5W/65V 的灯
32、泡的工作电流也约为 70mA 因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。采用电容降压时应注意以下几点:1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率。2 限流电容必须采用无极性电容,绝对不能采用电解电容。而且电容的耐压须在 400V 以上。最理想的电容为铁壳油浸电容。3 电容降压不能用于大功率条件,因为不安全。4 电容降压不适合动态负载条件。5 同样,电容降压不适合容性和感性负载。6 当需要直流工作时,尽量采用半波整流。不建议采用桥式整流。而且要满足恒定负载的条件。以上是电容降压工作原理的简单介绍
33、。前些日子我曾再次提出一个问题,就是只用电阻和电容可以组成什么电路,进一步讲只用一个电阻和一个电容可以组成什么电路。此篇可以是一个回答,有兴趣的可以再想一想还能组成什么电路。其实电阻、电容和电感作为电子电路的基本元件,熟知它们的特性并灵活地应用它。采用电容降压电路是一种常见的小电流电源电路,由于其具有体积小、成本低、电流相对恒定等优点,也常应用于 LED 的驱动电路中。图一为一个实际的采用电容降压的 LED 驱动电路:请注意,大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管,建议连接上,因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间(如雷电、大用电设备起动等)有效地将突变电流泄放,从而保护
34、二级关和其它晶体管,它们的响应时间一般在微毫秒圃圃电路工作原理:电容 C1 的作用为降压和限流:大家都知道,电容的特性是通交流、隔直流,当电容连接于交流电路中时,其容抗计算公式为:XC=1/2ffC式中,XC 表示电容的容抗、f 表示输入交流电源的频率、C 表示降压电容的容量。流过电容降压电路的电流计算公式为:I=U/XC式中 I 表示流过电容的电流、U 表示电源电压、XC 表示电容的容抗在 220V50Hz 的交流电路中,当负载电压远远小于 220V 时,电流与电容的关系式为:I=69C其中电容的单位为 uF,电流的单位为 mA卜表为在 220V、50Hz 的交流电路中,理论电流与实际测量电流的比较电容(uF)G.0470.102204712.247电流理论值3.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度商铺租赁合同终止及市场租金指数挂钩协议
- 2025年度股东股份协议书:智慧城市建设项目股权分配及合作协议
- 自建房安全质量监督承包协议书(2025年度)
- 农村自建房建筑工程保险合同(2025年度)
- 二零二五年度教育机构学费返利合同
- 二零二五年度高端基金份额代持保密协议书
- 2025年度砖厂安全生产承包管理合同
- 二零二五年度汽修厂汽车维修技师职业健康检查合同
- 2025年度烟草店店铺转让与独家销售区域授权合同
- 2025年度水平定向钻施工与施工期环境保护合同
- 考察领导谈话怎么评价领导【六篇】
- 无侧限抗压强度试验记录
- 钳形电流表使用PPT
- 建筑工程分部分项工程划分表(新版)
- 福建省危险化学品企业安全标准化(三级)考核评分标准指导意见(试行)
- 上海市长宁区2022年高考英语一模试卷(含答案)
- 城镇详细设计控制性详细规划
- 智能垃圾桶系统的设计论文
- 质量管理体系过程识别矩阵图及与条款对照表
- 北碚区幼儿园
- 2021年度锚索张拉机具及锚杆拉力计技术规格书
评论
0/150
提交评论