matlab神经网络实例超级简单_第1页
matlab神经网络实例超级简单_第2页
matlab神经网络实例超级简单_第3页
matlab神经网络实例超级简单_第4页
matlab神经网络实例超级简单_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、介绍神经网络算法在机械结构优化中的应用的例子如果看完了还有(大家要学习的时候只需要把输入输出变量更改为你自己的数据既可以了,问题的话可以加我微博“极南师兄”给我留言,与大家共同进步)。把一个结构的8个尺寸参数设计为变量,如上图所示,对应的质量,温差,面积作为输出。用神经网络拟合变量与输出的数学模型,首相必须要有数据来源,这里我用复合中心设计法则构造设方t点,根据规则,八个变量将构造出81个设计点。然后在ansysworkbench中进行81次仿真(先在proe建模并设置变量,将模型导入wokbench中进行相应的设置,那么就会自动的完成81次仿真,将结果导出来exceel文件)Matlab程序

2、如下202.5614.916.5614.916.5152.5614.916.5614.916.5252.5614.916.5614.916.5201614.916.5614.916.5204614.916.5614.916.5202.5214.916.5614.916.5202.51014.916.5614.916.5202.561016.5614.916.5202.5619.816.5614.916.5202.5614.910614.916.5202.5614.923614.916.5202.5614.916.5214.916.5202.5614.916.51014.916.5202.561

3、4.916.561016.5202.5614.916.5619.816.5202.5614.916.5614.910202.5614.916.5614.923P=17.512389471.753716844.00991157312.4621416813.266106314.00991157312.4621416819.7338936922.487610531.753716844.00991157312.4621416813.266106314.00991157312.4621416813.2661063117.512389473.246283164.00991157312.4621416813

4、.266106314.00991157317.3378583219.7338936922.487610533.246283164.00991157317.3378583213.2661063117.512389471.753716847.99008842717.3378583219.7338936922.487610531.753716847.99008842717.3378583213.2661063117.512389473.246283167.99008842712.4621416819.7338936922.487610533.246283167.99008842712.4621416

5、813.2661063117.512389471.753716844.00991157317.3378583213.2661063122.487610531.753716844.00991157317.3378583219.7338936917.512389473.246283164.00991157312.4621416813.2661063122.487610533.246283164.00991157312.4621416819.7338936917.512389471.753716847.99008842712.4621416813.2661063122.487610531.75371

6、6847.99008842712.4621416819.7338936917.512389473.246283167.99008842717.3378583213.2661063122.487610533.246283167.99008842717.3378583219.7338936917.512389471.753716844.00991157317.3378583213.2661063122.487610531.753716844.00991157317.3378583219.7338936917.512389473.246283164.00991157312.4621416813.26

7、61063122.487610533.246283164.00991157312.4621416819.7338936917.512389471.753716847.99008842712.4621416813.2661063122.487610531.753716847.99008842712.4621416819.7338936917.512389473.246283167.99008842717.3378583213.2661063122.487610533.246283167.99008842717.3378583219.7338936917.512389471.753716844.0

8、0991157312.4621416812.4621416812.4621416812.4621416812.4621416817.3378583217.3378583217.3378583217.3378583217.3378583217.3378583217.3378583217.3378583212.4621416812.4621416812.4621416812.4621416812.4621416812.4621416812.4621416812.4621416813.2661063113.2661063113.2661063113.2661063113.2661063113.266

9、1063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063119.7338936919.7338936919.7338936919.7338936919.7338936919.7338936919.7338936919.733893694.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115

10、734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.0099115734.00991157312.4621416819.7338936922.487610531.753716844.00991157317.3378583212.4621416813.2661063117.512389473.246283164.00991157317.3378583217.3378583219.7338936922.487610533.246283164.00991157317.3378583217.3

11、378583213.2661063117.512389471.753716847.99008842717.3378583217.3378583219.7338936922.487610531.753716847.99008842717.3378583217.3378583213.2661063117.512389473.246283167.99008842717.3378583212.4621416819.7338936922.487610533.246283167.99008842717.3378583219.733893694.00991157319.733893694.009911573

12、19.733893694.00991157319.733893694.00991157319.733893694.00991157319.733893694.00991157319.733893694.00991157312.4621416813.2661063117.512389471.753716844.00991157312.4621416817.3378583213.2661063122.487610531.753716844.00991157312.4621416817.3378583219.7338936917.512389473.246283164.00991157312.462

13、1416812.4621416813.2661063122.487610533.246283164.00991157312.4621416812.4621416819.7338936917.512389471.753716847.99008842712.4621416812.4621416813.2661063122.487610531.753716847.99008842712.4621416812.4621416819.7338936917.512389473.246283167.99008842712.4621416817.3378583213.2661063122.487610533.

14、246283167.99008842712.4621416817.3378583219.7338936917.512389471.753716844.00991157317.3378583212.4621416819.7338936922.487610531.753716844.00991157317.3378583212.4621416813.2661063117.512389473.246283164.00991157317.3378583217.3378583219.7338936922.487610533.246283164.00991157317.3378583217.3378583

15、213.2661063117.512389471.753716847.99008842717.3378583217.3378583219.7338936922.487610531.753716847.99008842717.3378583213.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.2661063113.266106317.9900884277.9900884277.99

16、00884277.9900884277.9900884277.9900884277.9900884277.9900884277.9900884277.9900884277.9900884277.9900884277.9900884277.99008842717.3378583213.2661063117.512389473.246283167.99008842717.3378583213.266106317.99008842717.3378583213.2661063112.4621416813.2661063117.3378583213.2661063113.266106317.990088

17、42719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.733893697.99008842719.73389369

18、7.99008842719.733893697.99008842719.733893697.99008842712.4621416819.7338936922.487610533.246283167.99008842717.3378583212.4621416813.2661063117.512389471.753716844.00991157312.4621416812.4621416819.7338936922.487610531.753716844.00991157312.4621416812.4621416813.2661063117.512389473.246283164.00991

19、157312.4621416817.3378583219.7338936922.487610533.246283164.00991157312.4621416817.512389471.753716847.99008842712.4621416817.3378583219.7338936922.487610531.753716847.99008842712.4621416817.3378583213.2661063117.512389473.246283167.99008842712.4621416812.4621416819.7338936922.487610533.246283167.99

20、008842712.4621416817.512389471.753716844.00991157317.3378583217.3378583213.2661063122.487610531.753716844.00991157317.3378583217.3378583219.7338936917.512389473.246283164.00991157317.3378583212.4621416813.2661063122.487610533.246283164.00991157317.3378583212.4621416819.7338936917.512389471.753716847

21、.99008842717.3378583212.4621416813.2661063122.487610531.753716847.99008842717.3378583212.4621416819.7338936917.512389473.246283167.99008842717.3378583222.487610533.246283167.99008842717.3378583217.3378583219.73389369';%注意因为本人做了81组仿真试验,这里的矩阵后面有转置符号,在神经网络模型中,输入P的是8X81的矩阵(把程序复制过来之后格式没对齐,大家自己调整一下啦),

22、对应的下面的输出T的是3x81的矩阵。T=150.7492.2849913.466165.1482.640219.6525138.0611.9297617.2795149.4462.2570413.766151.6422.3129313.166147.1462.2294714.062154.1312.340512.87144.1642.257613.76155.8892.3123713.172150.6462.2849913.466150.6212.2849913.466147.0912.2294714.062154.1662.340512.87144.2892.257613.76155.55

23、32.3123713.172150.6532.2849913.466150.7042.2849913.466148.4242.3760912.4879134.9522.0191716.3197154.2642.4186512.0311141.2072.0686415.7885156.4922.4405111.7964142.6712.0835815.6282152.4732.4466411.7306138.3292.0966315.488159.6962.4125212.0969145.9472.0555915.9287155.4012.4186512.0311141.732.0686415.

24、7885157.4082.4585811.6024144.12.1016615.4341163.4832.5011411.1455150.4832.1511414.9029154.1112.394312.2924140.4182.0373816.1242149.2532.4004412.2266135.9972.0504315.984151.5182.422311.9919137.2572.0653715.8237158.052.4648511.535143.7392.1148515.2925153.6412.394312.2924140.7232.0373816.1242158.9562.4

25、368611.8355146.9332.0868515.593160.7312.476811.4068149.3152.1198715.2386156.8422.4829311.341145.172.1329215.0984156.9422.4585811.6024143.9482.1016615.4341152.5032.4466411.7306138.4862.0966315.488154.842.468511.4959139.7952.1115715.3276161.5742.5291410.845147.5022.1791314.6024156.9752.4405111.7964143

26、.062.0835815.6282162.6882.5011411.1455150.4832.1511414.9029164.5882.5410810.7168153.0242.1841514.5485160.9082.5291410.845147.7942.1791314.6024151.4372.422311.9919137.3862.0653715.8237156.9792.4829311.341144.9152.1329215.0984159.1672.5047911.1063146.2292.1478614.9381155.6992.4928511.2345140.7672.1428

27、414.992161.7822.476811.4068149.1242.1198715.2386157.8192.4648511.535143.82.1148515.2925159.5532.5047911.1063146.1862.1478614.9381166.5122.5654210.4554153.8962.2154214.2129';%T为目标矢量PPps=mapminmax(P,-1,1);%把P归一化处理变为pp,在范围(-1,1)内%把T归一化处理变TT,在范围(-1,1)内,归一化主要是为了消除不通量岗对结果的影响TT,ps=mapminmax(T,-1,1);%创建三层前向神经网络,隐层神经元为15输出层神经元为3ne

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论