版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021年安徽省中考数学试卷一、选择题(本大题共0小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的1.的绝对值是( )A B. D. 【答案】【解析】【分析】利用绝对值的定义直接得出结果即可【详解】解:的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2. 2020年国民经济和社会发展统计公报显示,2020年我国共资助8990万人参加基本医疗保险.其中899万用科学记数法表示为( )A. 89.9×106B. 8.99×107C. 8.9×18D. 0.899
2、215;0【答案】B【解析】【分析】将8990万还原为8900后,直接利用科学记数法的定义即可求解.【详解】解:89万=89900000=,故选B.【点睛】本题考查了科学记数法的定义及其应用,解决本题的关键是牢记其概念和公式,本题易错点是含有单位“万”,学生在转化时容易出现错误3计算的结果是( )A. B.C. . 【答案】D【解析】【分析】利用同底数幂的乘法法则计算即可【详解】解:故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键4. 几何体的三视图如图所示,这个几何体是( ). B C. D. 【答案】C【解析】【分析】根据三视图,该几何体的主视图可
3、确定该几何体的形状,据此求解即可【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有选项,故选:【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键5. 两个直角三角板如图摆放,其中,,,A与D交于点.若,则的大小为( )A. B.C. D. 【答案】【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键 某品牌鞋子的长度ycm与鞋子的“码”数之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为7cm,则
4、38码鞋子的长度为( )A.2cm. 4cmC. 25cD6【答案】B【解析】【分析】设,分别将和代入求出一次函数解析式,把代入即可求解.详解】解:设,分别将和代入可得: ,解得 ,当时,,故选:B.【点睛】本题考查一次函数的应用,掌握用待定系数法求解析式是解题的关键7. 设,b,c为互不相等的实数,且,则下列结论正确的是( )AB. C.D.【答案】D【解析】【分析】举反例可判断A和B,将式子整理可判断C和D【详解】解:A.当,,时,,故A错误;B当,,时,故错误;C.整理可得,故C错误;D整理可得,故D正确;故选:D.【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.8 如图,在菱形
5、ABCD中,过菱形ABCD的对称中心O分别作边,BC的垂线,交各边于点,G,则四边形EFG的周长为( )A. B.C. D.【答案】A【解析】【分析】依次求出OE=O=OGH,利用勾股定理得出EF和OE的长,即可求出该四边形的周长.【详解】HBC,GAB,EO=O=90°,=20°,B=60°,EOF=120°,EO=°,由菱形的对边平行,得HFD,EGD,因为O点是菱形ACD的对称中心,O点到各边的距离相等,即OE=OFOG=O,OEF=OFE30°,OEH=OHE=60°,HFEFG=FGEHG=9°,所以四边
6、形FG是矩形;设O=O=OG=OH=x,EG=2,,如图,连接AC,则C经过点O,可得三角形B是等边三角形,BAC=6°,C=AB2,OA,AE=3°,A=,x=O=四边形EFGH的周长为EFF+HHE=,故选A.【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.9. 如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )A.
7、B CD. 【答案】【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题10 在中,分别过点,C作平分线的垂线,垂足分别为点D,E,的中点是,连接CD,D,ME.则下列结论错误的是( )A. B. C.D.【答案】【解析】【分析】设A、BC交于点H,作于点F,连接EF延长AC与BD并交于点G.由题意易证,从而证明E
8、为中位线,即,故判断B正确;又易证,从而证明D为BG中点.即利用直角三角形斜边中线等于斜边一半即可求出,故判断C正确;由、和可证明.再由、和可推出,即推出,即,故判断D正确;假设,可推出,即可推出.由于无法确定的大小,故不一定成立,故可判断A错误【详解】如图,设AD、BC交于点H,作于点F,连接F.延长与BD并交于点.AD是的平分线,,HCHF,AF=AC.在和中,AEC=AF=9°,C、E、F三点共线,点E为C中点M为C中点,M为中位线,,故B正确,不符合题意;在和中,,,即为BG中点.在中,,,故C正确,不符合题意;,,,,,.AD是的平分线, ,,故D正确,不符合题意;假设,,
9、在中,无法确定的大小,故原假设不一定成立,故A错误,符合题意.故选【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含角的直角三角形的性质等知识,较难正确的作出辅助线是解答本题的关键二、填空题(本大题共4小题,每小题分,满分0分)11. 计算:_.【答案】3【解析】【分析】先算算术平方根以及零指数幂,再算加法,即可【详解】解:,故答案为【点睛】本题主要考查实数的混合运算,掌握算术平方根以及零指数幂是解题的关键1.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是,它
10、介于整数和之间,则的值是_【答案】1【解析】【分析】先估算出,再估算出即可完成求解【详解】解:;因1.6介于整数1和2之间,所以;故答案:1【点睛】本题考查了对算术平方根取值的估算,要求学生牢记的近似值或者能正确估算出的整数部分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力1. 如图,圆O的半径为1,内接于圆O.若,则_.【答案】【解析】【分析】先根据圆的半径相等及圆周角定理得出BO=4°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接O、C、作ODABBC=2A=120°O=OCOC=°又
11、O=4°在RD中,OB=1BD=ODABBD=AD=AB=故答案为:【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键14.设抛物线,其中a为实数.(1)若抛物线经过点,则_;(2)将抛物线向上平移个单位,所得抛物线顶点的纵坐标的最大值是_.【答案】 0 【解析】【分析】()直接将点代入计算即可(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值【详解】解:(1)将代入得:故答案为:(2)根据题意可得新的函数解析式为:由抛物线顶点坐标得新抛物线顶点的纵坐标为:当a=时,有最大值为8,所得抛物线顶点的纵坐标的最大值是故
12、答案为:2【点睛】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法三、(本大题共2小题,每小题8分,满分6分)15. 解不等式:【答案】【解析】【分析】利用去分母、去括号、移项、合并同类项、系数化为即可解答.【详解】,,,.【点睛】本题考查了一元一次不等式的解法,熟练运用一元一次不等式的解法是解决问题的关键.16. 如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上.(1)将向右平移个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出.【答案】(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,
13、然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【点睛】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.四、(本大题共2小题,每小题分,满分6分). 学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形FD为矩形,点B、C分别在E、DF上,,,求零件的截面面积参考数据:,【答案】376m2【解析】【分析】首先证明,通过解和,求出AE,BE,F,BF,再根据计算求解即可【详解】解:如图,四边形AEFD为矩形, ,EF/AB,,在中,. 又 同理可得,答:零件的截面面积为3.76cm2【点睛】此
14、题主要考查了解直角三角形,通过解和,求出E,E,F,BF的长是解答此题的关键1 某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列观察思考当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有块(如图3);以此类推,规律总结(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;()若一条这样的人行道一共有(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含的代数式表示).问题解决(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,
15、要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)108块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:;()由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有块,即2+4;所以当地砖有n块
16、时,等腰直角三角形地砖有()块;故答案为:;(3)令 则当时,此时,剩下一块等腰直角三角形地砖需要正方形地砖18块.【点睛】本题为图形规律题,涉及到了一元一次方程、列代数式以及代数式的应用等,考查了学生的观察、发现、归纳以及应用的能力,解题的关键是发现规律,并能列代数式表示其中的规律等五、(本大题共2小题,每小题10分,满分20分)9 已知正比例函数与反比例函数的图象都经过点(m,)(1)求,的值;()在图中画出正比例函数的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围【答案】(1)的值分别是和3;()或【解析】【分析】(1)把点A(,2)代入求得的值,从而得点A的坐标,再代
17、入求得k值即可;(2)在坐标系中画出的图象,根据正比例函数的图象与反比例函数图象的两个交点坐标关于原点对称,求得另一个交点的坐标,观察图象即可解答.【详解】(1)将代入得, , ,将代入得, , 的值分别是和.(2)正比例函数的图象如图所示,正比例函数与反比例函数的图象都经过点A(3,),正比例函数与反比例函数的图象的另一个交点坐标为(3,-2),由图可知:正比例函数值大于反比例函数值时的取值范围为或.【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键. 如图,圆O中两条互相垂直的弦AB,CD交于点()M是D的中点,M3,CD=2,求圆O的半径长;(2)点F在CD上
18、,且CEE,求证:.【答案】(1);(2)见解析.【解析】【分析】(1)根据M是CD的中点,OM与圆O直径共线可得,平分 C,则有,利用勾股定理可求得半径的长;(2)连接AC,延长AF交D于G,根据,可得,,利用圆周角定理可得,可得,利用直角三角形的两锐角互余,可证得,即有【详解】(1)解:连接OC,M是CD的中点,与圆O直径共线,平分D, 在中圆的半径为(2)证明:连接AC,延长AF交于G,又在中【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键六、(本题满分分)21. 为了解全市居民用户用电情况,某部门从居民用户中随机抽取10户
19、进行月用电量(单位:k)调查,按月用电量5010,100150,5020,20050,250300,30350进行分组,绘制频数分布直方图如下:()求频数分布直方图中的值;(2)判断这10户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表:组别501010015150002050500000350月平均用电量(单位:kWh)7515175222525根据上述信息,估计该市居民用户月用电量的平均数【答案】(1)2;();(3)【解析】【分析】(1)利用0减去其它各组的频数即可求解;(2)中位数是第0和1两个数平均数,第和51两个数都位于月用电量15020
20、0的范围内,由此即可解答;()利用加权平均数的计算公式即可解答.【详解】(1)(2)中位数是第50和51两个数的平均数,第0和5两个数都位于月用电量15000的范围内,这100户居民用户月用电量数据的中位数在月用电量10200的范围内;(3)设月用电量为y,答:该市居民用户月用电量的平均数约为.【点睛】本题考查了频数分布直方图、中位数及加权平均数的知识,正确识图,熟练运用中位数及加权平均数的计算方法是解决问题的关键七、(本题满分12分)22. 已知抛物线的对称轴为直线(1)求的值;(2)若点M(x1,y1),N(2,)都在此抛物线上,且,.比较y1与2的大小,并说明理由;(3)设直线与抛物线交于点、B,与抛物线交于点C,,求线段与线段D的长度之比【答案】(1);(2),见解析;(3)【解析】【分析】()根据对称轴,代值计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中山大学肿瘤防治中心放疗科何立儒教授课题组自聘技术员招聘备考题库参考答案详解
- 2026年司法鉴定所鉴定助理招聘备考题库完整答案详解
- 2026年宜昌市水利和湖泊局所属事业单位“招才兴业”人才引进公开招聘备考题库及参考答案详解1套
- 2026年吉安市吉水县两山资源控股有限公司面向社会公开招聘出纳的备考题库及一套完整答案详解
- 2026年北京京糖酒类经营有限公司招聘备考题库及一套完整答案详解
- 2025年玉林市消防救援支队公开招聘专职消防人员备考题库完整参考答案详解
- 2026年中山城市科创园投资发展有限公司招聘备考题库完整参考答案详解
- 2026年广元市公共交通有限公司面向社会公开招聘公交车辆驾驶员(第一批)的备考题库及一套完整答案详解
- 2026年台州市黄岩经开投资集团有限公司下属公司公开招聘市场化工作人员的备考题库及参考答案详解一套
- 2026年东北农业大学财务处招聘备考题库及答案详解参考
- 物业设施维护保养计划表
- 北京市通州区2024-2025学年八年级下学期期中考试历史试题及答案
- 社会保障概论(第七版) 课件 第2章 社会保障制度的产生和发展
- 核医学总论教学课件
- 新风机组施工方案(3篇)
- 北京市朝阳区2023-2024学年七年级上学期期末语文试题(解析版)
- 安徽省2025年普通高中学业水平合格性考试语文题库及答案
- B细胞淋巴瘤课件
- 《这一次我全力以赴》(2023年广东省中考满分作文13篇附审题指导)
- 空调技师考试题及答案
- FRNC-5PC工艺计算软件操作的指南
评论
0/150
提交评论