菱形的性质与判定第二课时(菱形的判定)_第1页
菱形的性质与判定第二课时(菱形的判定)_第2页
菱形的性质与判定第二课时(菱形的判定)_第3页
菱形的性质与判定第二课时(菱形的判定)_第4页
菱形的性质与判定第二课时(菱形的判定)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2课时 菱形的判定有一组邻边相等的平行四边形叫做菱形。有一组邻边相等的平行四边形叫做菱形。3.菱形的性质菱形的性质1.菱形的定义菱形的定义()菱形的四条边都相等()菱形的四条边都相等()菱形的对角线互相垂直()菱形的对角线互相垂直2.菱形的特征菱形的特征菱形是一个轴对称图形菱形是一个轴对称图形 我们可以根据定义来判定一个四边形是菱形除此之外,还能找到其他的判定方法吗?菱形的性质“两条对角线互相垂直平分两条对角线互相垂直平分”中,“对对角线角线互相平分互相平分”是平行四边形所具有的一般性质,而“对角对角线线垂直垂直”是菱形所特有的性质。由此,可以得到一个猜想:“如果一个平行四边形如果一个平行四

2、边形的两条对角线互相垂直的两条对角线互相垂直,那么这个平行四边形是一个菱那么这个平行四边形是一个菱形。形。”如图20.3.1,取两根长度不等的细木棒,让两个木棒的中点重合并固定在一起,用笔和直尺画出木棒四个端点的连线。我们知道,这样得到的四边形是一个平行四边形若转动其中一个木棒,重复上面的做法,当两个木棒之间的夹角等于90时,得到的图形是什么图形呢?如图20.3.2,你还可以作一个两条对角线互相垂直的平行四边形和你的同伴交换一下,看看是否成了一个菱形由此可以得到判定菱形的一种方法:对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形如图20.3.3,平行四边形ABCD中,对角线AC

3、、BD互相垂直,我们可以证明: 四边形ABCD是菱形 图 20.3.3 证明证明 四边形ABCD是平行四边形 OAOC又ACBD BD所在直线是线段AC的垂直平分线 ABBC 四边形ABCD是菱形例例如图20.3.4,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形 图 20.3.4 分析分析要证四边形AFCE是菱形,由已知条件可知EFAC,所以只需证明四边形AFCE是平行四边形,又EF垂直平分AC,所以只需证OEOF证明证明 四边形ABCD是平行四边形AEFC12EF平分ACAOOC又AOECOF90AOE COF EOFO 四边形AF

4、CE是平行四边形又EFAC 四边形AFCE是菱形对于一个一般的四边形,能否也可以找到判定它是不是菱形的方法呢?由菱形的另一条性质“四条边都相等四条边都相等”,你可能会想到: 如果一个四边形的四条边都相等,那它会不会如果一个四边形的四条边都相等,那它会不会一定是菱形?一定是菱形?试着画一画,与周围的同学讨论,猜一猜结论是否成立由此我们得到了判定菱形的又一种方法:四条边都相等的四边形是菱形四条边都相等的四边形是菱形其实,这个结论同样是正确的这里的条件能否再减少一些呢?能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的菱形的判定方法菱形的

5、判定方法1.有一组邻边相等的平行四边形是菱形有一组邻边相等的平行四边形是菱形3.四条边都相等的四边形是菱形四条边都相等的四边形是菱形2.对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形1.1.下列条件中下列条件中, ,不能判定四边形不能判定四边形ABCDABCD为菱形的是()为菱形的是() . AC. ACBD BD ,ACAC与与BDBD互相平分互相平分 . AB=BC=CD=DA. AB=BC=CD=DA . AB=BC. AB=BC,AD=CDAD=CD,且,且AC AC BD . AB=CD. AB=CD,AD=BCAD=BC,AC AC BDOADCBC2.已知已知:

6、如图如图,在平行四边形在平行四边形ABCD中中,AE平分平分BAD,BAD,与与BCBC相交于点相交于点E,EF/AB,E,EF/AB,与与ADAD相交于点相交于点F.F.求证求证: :四边形四边形ABEFABEF是菱形是菱形. .ABCDEF3.3.已知如图,在已知如图,在ABC,ACB=90ABC,ACB=900 0,ADAD是角平分线,是角平分线,点点E E、F F分别在分别在ABAB、ADAD上,且上,且AE=ACAE=AC,EFBCEFBC。求证:四边形求证:四边形CDEFCDEF是菱形是菱形O12ACBDEF已知:如图,在正方形已知:如图,在正方形ABCDABCD中,点中,点E E、F F在在BDBD上,且上,且BF=DE.BF=DE.求证:四边形求证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论