




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解排列问题的常用技巧解排列问题的常用技巧 解排列问题,首先必须认真审题,明确问解排列问题,首先必须认真审题,明确问题是否是排列问题,其次是抓住问题的本质题是否是排列问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方答,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。法技巧,使一些看似复杂的问题迎刃而解。 下面就不同的题型介绍几种常用的解题下面就不同的题型介绍几种常用的解题技巧。技巧。总的原则总的原则合理分类和准确分步合理分类和准确分步 解排列(或)组合问题,应按元素的性质进行解排列
2、(或)组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准分类,事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。明确,分步层次清楚,不重不漏。解法解法1 分析:先安排甲,按照要求对其进行分类,分两类:分析:先安排甲,按照要求对其进行分类,分两类:根据分步及分类计数原理,不同的站法共有根据分步及分类计数原理,不同的站法共有例例1 6个同学和个同学和2个老师排成一排照相,个老师排成一排照相, 2个个老师站中间,学生甲不站排头,学生乙不站排老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?尾,共有多少种不同的排法?1)若甲在排尾上,则剩下的若甲
3、在排尾上,则剩下的5人可自由安排,有人可自由安排,有 种方法种方法.55A2) 若甲在第若甲在第2、3、6、7位,则位,则排尾的排法有排尾的排法有 种,种,1位的排法位的排法有有 种种, 第第2、3、6、7位的排法有位的排法有 种种,根据分步计数,根据分步计数原理,不同的站法有原理,不同的站法有 种。种。14A14A44A441414AAA再安排老师,有再安排老师,有2种方法。种方法。.(1008)(244141455种)AAAA解法解法2 见练习见练习3(2)(1)0,1,2,3,4,5可组成多少个无重复数字可组成多少个无重复数字的五位偶数?的五位偶数?个位数为零:个位数为零:个位数为个位数
4、为2或或4:45A341412AAA 34141245AAAA 所以所以练练 习习 1(2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且能被五整除的五位数?字且能被五整除的五位数?分类:后两位数字为分类:后两位数字为5或或0:个位数为个位数为0:45A个位数为个位数为5:216341445 AAA3414AA =312(3)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且大于字且大于31250的五位数?的五位数?分类:分类:(4)31250是由是由0,1,2,3,4,5组成的无重复组成的无重复数字的五位数中从小到大第几个数?数字的五位数中从小到大第几个数
5、?3251231234134512 AAAAAA2753254515 AA27512212233445 AAAA方法一:(排除法)方法一:(排除法)方法二:(直接法)方法二:(直接法)(一)特殊元素的(一)特殊元素的“优先安排法优先安排法” 对于特殊元素的排列组合问题,一般应先考虑特殊元对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。素,再考虑其它元素。 例例2 用用0,1,2,3,4这五个数,组成没有重复数字这五个数,组成没有重复数字的三位数,其中偶数共有(的三位数,其中偶数共有( )A.24 B.30 C.40 D.60 分析:由于该三位数是偶数,所以末尾数字必须是偶数,
6、分析:由于该三位数是偶数,所以末尾数字必须是偶数, 又因为又因为0不能排首位,故不能排首位,故0就是其中的就是其中的“特殊特殊”元素,应优先元素,应优先安排。按安排。按0排在末尾和不排在末尾分为两类;排在末尾和不排在末尾分为两类;1) 0排在末尾时,有排在末尾时,有 个;个;2) 0不排在末尾时,先用偶数排个位,再排百位,最后排不排在末尾时,先用偶数排个位,再排百位,最后排十位有十位有 个;个;3) 由分类计数原理,共有偶数由分类计数原理,共有偶数 30 个个.2A4111233A A AB解题技巧解题技巧 例例3 用用0,1,2,3,4这五个数,组成没有重复这五个数,组成没有重复数字的三位数
7、,其中数字的三位数,其中1不在个位的数共有不在个位的数共有_种。种。(二)总体淘汰法(二)总体淘汰法(间接法)间接法) 对于含有否定词语的问题,还可以从总体中把不对于含有否定词语的问题,还可以从总体中把不符合要求的减去,此时应注意既符合要求的减去,此时应注意既不能多减又不能少减不能多减又不能少减。39(1)三个男生,四个女生排成一排,甲不)三个男生,四个女生排成一排,甲不在最左,乙不在最右,有几种不同方法?在最左,乙不在最右,有几种不同方法?37202556677 AAA (2)五人从左到右站成一排,其中甲不站排头,)五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,那么不同的站法有(乙
8、不站第二个位置,那么不同的站法有( ) A.120 B.96 C.78 D.72782334455AAA间接4113433378AA A A种直接练练 习习 3(三)相邻问题(三)相邻问题捆绑法捆绑法 对于某几个元素要求相邻的排列问题,可先将相对于某几个元素要求相邻的排列问题,可先将相邻的元素邻的元素“捆绑捆绑”在一起,看作一个在一起,看作一个“大大”的元(组),的元(组),与其它元素排列,然后再对相邻的元素(组)内部进与其它元素排列,然后再对相邻的元素(组)内部进行排列。行排列。例例4 7人站成一排照相,要求甲,乙,丙三人相邻,人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?分别有
9、多少种站法?分析:先将甲,乙,丙三人捆绑在一起看作一个元素,分析:先将甲,乙,丙三人捆绑在一起看作一个元素,与其余与其余4人共有人共有5个元素做全排列,有个元素做全排列,有 种排法,然后种排法,然后对甲,乙,丙三人进行全排列。对甲,乙,丙三人进行全排列。55A由分步计数原理可得:由分步计数原理可得: 种不同排法。种不同排法。5353A A(四)不相邻问题(四)不相邻问题插空法插空法 对于某几个元素不相邻得排列问题,可先将其它对于某几个元素不相邻得排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。之间及两端的
10、空隙之间插入即可。例例5 7人站成一排照相,要求甲,乙,丙三人不相邻,人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?分别有多少种站法?分析:可先让其余分析:可先让其余4人站好,共有人站好,共有 种排法,再在种排法,再在这这4人之间及两端的人之间及两端的5个个“空隙空隙”中选三个位置让甲、中选三个位置让甲、乙、丙插入,则有乙、丙插入,则有 种方法,这样共有种方法,这样共有 种不种不同的排法。同的排法。44A35A3544AA(1)三个男生,四个女生排成一排,男生、女)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?生各站一起,有几种不同方法?2三个男生,四个女生排成
11、一排,三个男生,四个女生排成一排,男生之间、男生之间、女生之间不相邻,有几种不同排法?女生之间不相邻,有几种不同排法?捆绑法:捆绑法:443322AAA 4433AA 插空法:插空法:3如果有两个男生、四个女生排成一排,要如果有两个男生、四个女生排成一排,要 求男求男生之间不相邻,有几种不同排法?生之间不相邻,有几种不同排法?2544AA 插空法:插空法:练练 习习 4例例6 有有4名男生,名男生,3名女生。名女生。3名女生名女生高矮互不等,高矮互不等,将将7名学生排成一行,要求从左到右,女生从矮到高名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?排列,有多少种排法?(五)顺序固
12、定问题用(五)顺序固定问题用“除法除法” 对于某几个元素顺序一定的排列问题,可先将对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数排列数除以这几个元素的全排列数.所以共有所以共有 种。种。 473377AAA分析:先在分析:先在7个位置上作全排列,有个位置上作全排列,有 种排法。其中种排法。其中3个女生因要求个女生因要求“从矮到高从矮到高”排,只有一种顺序故排,只有一种顺序故 只只对应一种排法,对应一种排法,33A77A(1) 五人排队,甲在乙前面的排法有几种?五人排队,甲在乙前面的排
13、法有几种?练练 习习 52三个男生,四个女生排成一排,其中三个男生,四个女生排成一排,其中甲、乙、丙甲、乙、丙三人的顺序不变,有几种不同排法?三人的顺序不变,有几种不同排法?473377AAA分析:若不考虑限制条件,则有分析:若不考虑限制条件,则有 种排法,而甲,种排法,而甲,乙之间排法有乙之间排法有 种,故甲在乙前面的排法只有一种种,故甲在乙前面的排法只有一种符合条件,故符合条件,故符合条件的排法有符合条件的排法有 种种.55A22A5522AA35A即(六)分排问题用(六)分排问题用“直排法直排法” 把把n个元素排成若干排的问题,若没有其他个元素排成若干排的问题,若没有其他的特殊要求,可采
14、用统一排成一排的方法来处理的特殊要求,可采用统一排成一排的方法来处理.例例7 七人坐两排座位,第一排坐七人坐两排座位,第一排坐3人,第二排坐人,第二排坐4人,则有多少种不同的坐法?人,则有多少种不同的坐法? 分析:分析:7个人,可以在前后排随意就坐,再无个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以其他限制条件,故两排可看作一排处理,所以不同的坐法有不同的坐法有 种种.77A(七)实验法(七)实验法 题中附加条件增多,直接解决困难时,用实验逐题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。步寻求规律有时也是行之有效的方法。 例例8 将数字将
15、数字1,2,3,4填入标号为填入标号为1,2,3,4的的四个方格内,每个方格填四个方格内,每个方格填1个,则每个方格的标号个,则每个方格的标号与所填的数字均不相同的填法种数有(与所填的数字均不相同的填法种数有( )A.6 B.9 C.11 D.23分析:此题考查排列的定义,由于附加条件较多,解法较为困难,分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。可用实验法逐步解决。(八)住店法(八)住店法解决解决“允许重复排列问题允许重复排列问题”要注意区分两类元素:要注意区分两类元素: 一类元素可以重复,另一类不能重复,把不能重复一类元素可以重复,另一类不能重复,把不能重
16、复的元素看作的元素看作“客客”,能重复的元素看作,能重复的元素看作“店店”,再利用乘,再利用乘法原理直接求解。法原理直接求解。例例9 七名学生争夺五项冠军,每项冠军只能由一七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有(人获得,获得冠军的可能的种数有( )A. B. C D.分析:因同一学生可以同时夺得分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,项冠军,故学生可重复排列,将七名学生看作将七名学生看作7家家“店店”,五项冠军看作,五项冠军看作5名名“客客”,每个,每个“客客”有有7种住宿法,由乘法原理得种住宿法,由乘法原理得 种。种。注:对此类问题,常有疑惑,为
17、什么不是注:对此类问题,常有疑惑,为什么不是 呢?呢?57577557A57C75用分步计数原理看,用分步计数原理看,5是步骤数,自然是指数。是步骤数,自然是指数。(十)特征分析(十)特征分析 研究有约束条件的排数问题,须要紧扣题目所提研究有约束条件的排数问题,须要紧扣题目所提供的数字特征,结构特征,进行推理,分析求解。供的数字特征,结构特征,进行推理,分析求解。 例例11 由由1,2,3,4,5,6六个数字可以组成多少六个数字可以组成多少个无重复且是个无重复且是6的倍数的五位数?的倍数的五位数?分析数字特征:分析数字特征:6的倍数既是的倍数既是2的倍数又是的倍数又是3的倍数。其中的倍数。其中3的倍数又满足的倍数又满足“各个数位上的数字之和是各个数位上的数字之和是3的倍数的倍数”的特征。的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源汽车电池租赁行业商业模式创新与可持续发展报告
- 2025年互联网金融平台信任危机防范与金融科技风险管理策略优化报告
- 合伙人合同协议书购销合同
- 2025年国际教育交流项目中学生跨文化适应能力培养效果评价体系构建与实施报告
- 探索2025年制造业数字化转型数据治理中的数据治理与工业互联网安全技术应用报告
- 探索2025年模具数字化设计仿真技术在环保产业的应用报告
- 广播媒体在2025年融媒体转型中的内容创新与品牌影响力拓展策略报告
- 夏宇旭中国传统文化课件
- 2025年浙江省杭州市萧山区高桥初中教育集团中考数学模拟试卷(4月份)
- 2025年汽车行业供应链韧性评估与风险管理在汽车行业供应链追溯中的应用报告
- 2025年市政工程地下管网试题及答案
- 2025年武汉铁路局集团招聘(180人)笔试参考题库附带答案详解
- PHPstorm激活码2025年5月13日亲测有效
- 2025届云南省曲靖市高三第二次教学质量检测生物试卷(有答案)
- 农产品供应链应急保障措施
- 《ISO 37001-2025 反贿赂管理体系要求及使用指南》专业解读和应用培训指导材料之4:6策划(雷泽佳编制-2025A0)
- 2024年中国农业银行安徽蚌埠支行春季校招笔试题带答案
- 2025年2月21日四川省公务员面试真题及答案解析(行政执法岗)
- 球团机械设备工程安装及质量验收标准
- 国家开放大学汉语言文学本科《中国现代文学专题》期末纸质考试第一大题选择题库2025春期版
- 数字修约考试题及答案
评论
0/150
提交评论