生物基础知识_第1页
生物基础知识_第2页
生物基础知识_第3页
生物基础知识_第4页
生物基础知识_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1. 细胞通讯(cell communication)细胞通讯是指在多细胞生物的细胞社会中, 细胞间或细胞内通过高度精确和高效地发送与接收信息的通讯机制, 并通过放大引起快速的细胞生理反应,或者引起基因活动,尔后发生一系列的细胞生理活动来协调各组织活动, 使之成为生命的统一整体对多变的外界环境作出综合反应。多细胞生物是由不同类型的细胞组成的社会, 而且是一个开放的社会,这个社会中的单个细胞间必须协调它们的行为,为此,细胞建立通讯联络是必需的。如生物体的生长发育、分化、各种组织器官的形成、组织的维持以及它们各种生理活动的协调, 都需要有高度精确和高效的细胞间和细胞内的通讯机制。2. 信号传导(c

2、ell signalling)是细胞通讯的基本概念, 强调信号的产生、分泌与传送,即信号分子从合成的细胞中释放出来,然后进行传递。3. 信号转导(signal transduction)是细胞通讯的基本概念, 强调信号的接收与接收后信号转换的方式(途径)和结果, 包括配体与受体结合、第二信使的产生及其后的级联反应等, 即信号的识别、转移与转换。4. 信号分子(signaling molecules)信号分子是指生物体内的某些化学分子, 既非营养物, 又非能源物质和结构物质,而且也不是酶,它们主要是用来在细胞间和细胞内传递信息, 如激素、神经递质、生长因子等统称为信号分子,它们的惟一功能是同细胞

3、受体结合, 传递细胞信息。多细胞生物中有几百种不同的信号分子在细胞间传递信息,这些信号分子中有蛋白质、多肽、氨基酸衍生物、核苷酸、胆固醇、脂肪酸衍生物以及可溶解的气体分子等。根据信号分子的溶解性分为水溶性信息(water-soluble messengers)和脂溶性信息(lipid-soluble messengers),前者作用于细胞表面受体,后者要穿过细胞质膜作用于胞质溶胶或细胞核中的受体。其实,信号分子本身并不直接作为信息,它的基本功能只是提供一个正确的构型及与受体结合的能力,就像钥匙与锁一样,信号分子相当于钥匙,因为只要有正确的形状和缺齿就可以插进锁中并将锁打开。至于锁开启后干什么,

4、由开锁者决定了。5. 激素(hormone)激素是由内分泌细胞(如肾上腺、睾丸、卵巢、胰腺、甲状腺、甲状旁腺和垂体)合成的化学信号分子,这些信号分子被分泌到血液中后, 经血液循环运送到体内各个部位作用于靶细胞。激素经血液循环系统运送到全身的速度很快,通常只需几分钟。每种激素都有与其相配的一种或几种受体; 一种内分泌细胞基本上只分泌一种激素。6. 内分泌信号(endocrine signaling)。由内分泌细胞合成并分泌到细胞外进行信号传导的分子称为内分泌信号。一般为激素类物质。这类信号分子通讯方式的距离最远,覆盖整个生物体。内分泌信号的激素有三种类型:蛋白与肽类激素、类固醇激素、氨基酸衍生物

5、激素。蛋白和多肽激素(protein and peptide hormones) 在脊椎动物细胞中占80%,此类激素通常只与细胞质膜受体结合。类固醇激素(steroid hormones) 是在光面内质网上利用胆固醇酶合成的,不溶于水,所以通常与血液中蛋白质结合,然后通过血液循环运送到靶细胞。类固醇激素能够穿过靶细胞的质膜作用于靶细胞内受体。氨基酸衍生物(amino acid derivatives) 主要是由酪氨酸衍生而来的小分子激素,如肾上腺素和甲状腺素。肾上腺素和它的衍生物作用于膜受体,而甲状腺素则穿过细胞质膜与细胞内受体结合。7. 局部介质(local mediators)局部介质是由

6、各种不同类型的细胞合成并分泌到细胞外液中的信号分子,它只能作用于周围的细胞。即信号分子分泌出来之后停留在分泌细胞周围的细胞外液体中,只是将信息传递给相邻细胞,通讯距离很短,只有几毫米。8. 旁分泌信号(paracrine signaling)分泌到细胞外后只能作用于邻近细胞的信号分子称为旁分泌信号。如生长因子(growth factors)蛋白就是局部介质,它能够调节多细胞生物的细胞生长和分裂,作用的靶细胞主要是邻近的细胞。控制免疫系统细胞的发育及其他行为的淋巴因子 (lymphokines),也只作用于局部区域,属旁分泌信号。9. 自分泌信号(autocrine signaling)局部介质

7、中的某些信号分子也作用于分泌细胞本身, 如前列腺素(prostaglandin,PG)是由前列腺合成分泌的脂肪酸衍生物(主要是由花生四烯酸合成的), 它不仅能够控制邻近细胞的活性,也能作用于合成前列腺素细胞自身,通常将由自身合成并作用于自身的信号分子称为自分泌信号。10. 神经递质 (neurotransmitters)神经递质是从神经细胞的特殊部位突触(synapses)中释放出来的信号分子,在它们作用于靶细胞之前,突触必须同靶细胞挨得很近很近,这是因为神经递质扩散的距离有限。另外,为了引起邻近靶细胞的反应,还必须产生一种电信号,所以神经递质仅作用于与之相连的靶细胞。神经递质释放后, 作用速

8、度快, 部位精确, 维持时间短, 与受体的亲和力低。由于神经递质是神经细胞分泌的,所以这种信号又称为神经信号(neuronal signaling)。11. 受体( receptor)受体在细胞生物学中是一个很泛的概念,意指任何能够同激素、神经递质、药物或细胞内的信号分子结合并能引起细胞功能变化的生物大分子。在细胞通讯中,由信号传导细胞送出的信号分子必须被靶细胞接收才能触发靶细胞的应答,接收信息的分子称为受体,此时的信号分子被称为配体(ligand)。在细胞通讯中受体通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。12. 表面受体(surface receptor)位于细胞质膜上的受体称

9、为表面受体(surface receptor), 细胞表面受体主要是识别周围环境中的活性物质或被相应的信号分子所识别, 并与之结合, 将外部信号转变成内部信号, 以启动一系列反应而产生特定的生物效应。表面受体多为膜上的功能性糖蛋白, 也有由糖脂组成的, 如霍乱毒素受体、百日咳毒素受体; 有的受体是糖脂和糖蛋白组成的复合物, 如促甲状腺素受体。若仅为由一条多肽链组成的受体, 称单体型受体, 若由两条或两条以上的多肽链组成的则称聚合型受体。表面受体主要是同大的信号分子或小的亲水性信号分子作用,传递信息。13. 细胞内受体(intracellular receptor)位于胞质溶胶、核基质中的受体称

10、为细胞内受体(intracellular receptor)。细胞内受体主要是同脂溶性的小信号分子相作用。位于胞质溶胶中受体要与相应的配体结合后才可进入细胞核。胞内受体识别和结合的是能够穿过细胞质膜的小的脂溶性的信号分子,如各种类固醇激素、甲状腺素、维生素D以及视黄酸。细胞内受体的基本结构都很相似,有极大的同源性。细胞内受体通常有两个不同的结构域, 一个是与DNA结合的中间结构域, 另一个是激活基因转录的N端结构域。此外还有两个结合位点,一个是与脂配体结合的位点,位于C末端,另一个是与抑制蛋白结合的位点。14. 离子通道偶联受体(ino-channel linked receptor)具有离子

11、通道作用的细胞质膜受体称为离子通道受体。这种受体见于可兴奋细胞间的突触信号传导,产生一种电效应,如烟碱样乙酰胆碱受体 (nAchR)、-氨基丁酸受体(GABAR)和甘氨酸受体等都是离子通道偶联受体。它们多为数个亚基组成的寡聚体蛋白, 除有配体结合位点外, 本身就是离子通道的一部分,并借此将信号传递至细胞内。信号分子同离子通道受体结合, 可改变膜的离子通透性。15. G-蛋白偶联受体(G-protein linked receptor)配体与受体结合后激活相邻的G-蛋白, 被激活的G-蛋白又可激活或抑制一种产生特异第二信使的酶或离子通道,引起膜电位的变化。由于这种受体参与的信号转导作用要与GTP

12、结合的调节蛋白相偶联,因此将它称为G蛋白偶联受体。这类受体的种类很多,并在结构上都很相似都是一条多肽链,并且有7次螺旋跨膜区。这种7次跨膜受体蛋白的超家族包括视紫红质(脊椎动物眼中的光激活光受体蛋白)以及脊椎动物鼻中的嗅觉受体。G蛋白偶联受体是最大的一类细胞表面受体,它们介导许多细胞外信号的传导,包括 激素、局部介质和神经递质等。G蛋白偶联受体的进化地位相当原始,不仅存在于亲缘关系较远的真核生物(如酵母)中,即使在细菌中也存在与G-蛋白偶联受体相似的膜蛋白,如细菌的菌紫红质,它的作用是光驱动的H+-泵。但细菌中的此类蛋白并不具有G-蛋白偶联受体的功能,因为细菌中没有G蛋白,推测其偶联系统并不相

13、同。16. 酶联受体(enzyme linked receptor)这种受体蛋白既是受体又是酶,一旦被配体激活即具有酶活性并将信号放大,又称催化受体(catalytic receptor)。这一类受体转导的信号通常与细胞的生长、繁殖、分化、生存有关。酶联受体也是跨膜蛋白, 细胞内结构域常常具有某种酶的活性,故称为酶联受体。但并非所有的酶联受体的细胞内结构域都具有酶活性,所以,按照受体的细胞内结构域是否具有酶活性将此类受体分为两大类:缺少细胞内催化活性的酶联受体,和具有细胞内催化活性的受体。17. 表面受体超家族(surface receptor superfamilies)根据表面受体进行信号

14、转导的方式将受体分为三大类,若根据表面受体与质膜的结合方式在可分为单次跨膜、7次跨膜和多亚单位跨膜等三个家族。酶联受体,如酪氨酸蛋白激酶受体和鸟苷环化酶受体等都属于单次跨膜(single-pass receptor)受体,它们的多肽链上只有一个跨膜的螺旋。第二类是7次跨膜受体(seven-pass receptor),这类受体的多肽链中有7个跨膜螺旋区,如肾上腺素受体、多巴胺受体、5-羟色胺受体、促甲状腺素受体、黄体生成素受体等都是7次跨膜受体,此类受体在信号转导中全部同G蛋白偶联。第三类是由多个亚基共同组装成的受体(multisubunit receptor),如前面讨论过的烟碱样乙酰胆碱受

15、体。受体与膜结合方式的差异决定着它们参与细胞通讯方式的不同。18. 受体交叉(receptor crossover)受体与配体的结合是高度特异的, 但这种特异性不是绝对的, 如胰岛素受体除结合胰岛素外, 还可同胰岛素样生长因子结合。糖皮质(激)素受体除同糖皮质(激)素结合以外, 还可同其它甾类激素结合, 反之亦然。这种受体与配体交叉结合的现象称为受体交叉。19. 亲和标记(affinity labeling)对酶的活性部位、受体的结合位点进行特异标记的方法。试剂A-X的A基团和X基团可分别与不同的位点进行结合,从而将两种物质交联在一起。如用亲和标记法分离细胞表面受体时, 先将细胞与超量标记的激

16、素(配体)混合,以饱和所有特异受体的激素结合位点;洗去多余的激素,然后加入能够与受体和配体结合的共价交联剂将激素与受体进行共价交联达到分离的目的。20. 信号级联放大(signaling cascade)从细胞表面受体接收外部信号到最后作出综合性应答是一个将信号逐步放大的过程,称为信号的级联放大反应。组成级联反应的各个成员称为一个级联(cascade),主要是由磷酸化和去磷酸化的酶组成。信号的级联放大作用对细胞来说至少有两个优越性:第一,同一级联中所有具有催化活性的酶受同一分子调控,如糖原分解级联中有三种酶:依赖于cAMP的蛋白激酶、糖原磷酸化酶激酶和糖原磷酸化酶都是直接或间接受cAMP调控的

17、。第二:通过级联放大作用,使引起同一级联反应的信号得到最大限度的放大。如10-10M的肾上腺素能够通过对糖原分解的刺激将血液中的葡萄糖水平提高50%.在肾上腺素的刺激下,细胞内产生10-6M的cAMP(图5M-1)。21.46K图M5-1 肾上腺素在细胞内的级联放大作用级联反应除了具有将信号放大,使原始信号变得更强、更具激发作用,引起细胞的强烈反应外,级联反应还有其他一些作用: 信号转移,即将原始信号转移到细胞的其他部位;信号转化,即将信号转化成能够激发细胞应答的分子,如级联中的酶的磷酸化;信号的分支,即将信号分开为几种平行的信号,影响多种生化途径,引起更大的反应;级联途中的各个步骤都有可能受

18、到一些因子的调节,因此级联反应的最终效应还是由细胞内外的条件来决定。21. 第二信使(second messengers)细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使,而将细胞外的信号称为第一信使(first messengers)。第二信使至少有两个基本特性: 是第一信使同其膜受体结合后最早在细胞膜内侧或胞浆中出现、仅在细胞内部起作用的信号分子;能启动或调节细胞内稍晚出现的反应信号应答。第二信使都是小的分子或离子。细胞内有五种最重要的第二信使:cAMP、cGMP、1,2-二酰甘油(diacylglycerol,DAG)、1,4,5-三磷酸肌醇(inosositol 1,4,5

19、-trisphosphate,IP3)、Ca2+ 等。第二信使在细胞信号转导中起重要作用,它们能够激活级联系统中酶的活性,以及非酶蛋白的活性。第二信使在细胞内的浓度受第一信使的调节,它可以瞬间升高、且能快速降低,并由此调节细胞内代谢系统的酶活性,控制细胞的生命活动,包括:葡萄糖的摄取和利用、脂肪的储存和移动以及细胞产物的分泌。第二信使也控制着细胞的增殖、分化和生存,并参与基因转录的调节。22. GTP结合蛋白(GTP binding protein, G蛋白)与GTP或GDP结合的蛋白质,又叫鸟苷酸结合调节蛋白(guanine nucleotide-binding regulatory pro

20、tein)。从组成上看,有单体G蛋白(一条多肽链)和多亚基G蛋白(多条多肽链组成)。G蛋白参与细胞的多种生命活动,如细胞通讯、核糖体与内质网的结合、小泡运输、蛋白质合成等。G蛋白偶联系统中的G蛋白是由三个不同亚基组成的异源三体,三个亚基分别是、, 总相对分子质量在100kDa左右, 亚基为36 kDa左右, 亚基为8-11kDa左右。、两亚基通常紧密结合在一起, 只有在蛋白变性时才分开,鸟苷结合位点位于亚基上。此外,亚基还具有GTPase的活性结构域和ADP核糖化位点。G蛋白属外周蛋白, 它们在膜的细胞质面通过脂肪酸链锚定在质膜上。G蛋白是一个大家族, 目前研究得较多的是Gs (转导激素对腺苷

21、酸环化酶的活化过程)、Gi (转导激素对腺苷酸环化酶的抑制作用), 另外还有其他的一些三体G蛋白。G蛋白有多种调节功能, 包括Gs和Gi对腺苷酸环化酶的激活和抑制、对cGMP磷酸二酯酶的活性调节、对磷脂酶C的调节、对细胞内Ca2+浓度的调节等。 另外还参与门控离子通道的调节。23. PKA系统(protein kinase A system, PKA)是G蛋白偶联系统的一种信号转导途径。信号分子作用于膜受体后,通过G蛋白激活腺苷酸环化酶, 产生第二信使cAMP后,激活蛋白激酶A进行信号的放大。故将此途径称为PKA信号转导系统。如胰高血糖素和肾上腺素都是很小的水溶性的胺,它们在结构上没有相同之处

22、,并作用于不同的膜受体, 但都能通过G蛋白激活腺苷酸环化酶, 最后通过蛋白激酶A进行信号放大。24. 效应物(effector)所谓效应物是指直接产生效应的物质,通常是酶,如腺苷酸环化酶、磷酸脂酶等,它们是信号转导途径中的催化单位。效应物通常也是跨膜糖蛋白。25. 腺苷酸环化酶(adenylate cyclase, AC)腺苷酸环化酶是膜整合蛋白,它的氨基端和羧基端都朝向细胞质。AC在膜的细胞质面有两个催化结构域,还有两个膜整合区,每个膜整合区分别有6个跨膜的螺旋。哺乳动物中已发现6个腺苷酸环化酶异构体。由于AC能够将ATP转变成cAMP,引起细胞的信号应答,故此,AC是G蛋白偶联系统中的效应

23、物。26. 蛋白激酶 A (protein kinase A,PKA)又称依赖于cAMP的蛋白激酶A (cyclic-AMP dependent protein kinase A),是一种结构最简单、生化特性最清楚的蛋白激酶。PKA全酶分子是由四个亚基组成的四聚体, 其中两个是调节亚基(regulatory subunit, 简称R 亚基),另两个是催化亚基(catalytic subunit, 简称 C 亚基)。R亚基的相对分子质量为4955kDa, C亚基的相对分子质量为40kDa,总相对分子质量约为180kDa;全酶没有活性。在大多数哺乳类细胞中, 至少有两类蛋白激酶A, 一类存在于胞质

24、溶胶, 另一类结合在质膜、核膜和微管上。激酶是激发底物磷酸化的酶,所以蛋白激酶A的功能是将ATP上的磷酸基团转移到特定蛋白质的丝氨酸或苏氨酸残基上进行磷酸化, 被蛋白激酶磷酸化了的蛋白质可以调节靶蛋白的活性。一般认为, 真核细胞内几乎所有的cAMP的作用都是通过活化PKA,从而使其底物蛋白发生磷酸化而实现的。27. PKC系统(protein kinase C system,PKC system)由于该系统中的第二信使是磷脂肌醇,故此这一系统又称为磷脂肌醇信号途径(phosphatidylinositol signal pathway)。在这一信号转导途径中,膜受体与其相应的第一信使分子结合后

25、,激活膜上的Gq蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶C (phospholipase C, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内的第二信使:二酰甘油( diacylglycerol, DAG)和1,4,5-三磷酸肌醇(IP3)。IP3动员细胞内钙库释放Ca2+到细胞质中与钙调蛋白结合,随后参与一系列的反应;而DAG在Ca2+的协同下激活蛋白激酶C(protein kinase C,PKC),然后通过蛋白激酶C引起级联反应,进行细胞的应答, 故此将该系统称为PKC系统,或称为IP3、D

26、AG、Ca2+信号通路。28. IP3受体(IP3 receptor)IP3受体是一种内质网通道蛋白, 由四个相对分子质量为260kDa的糖蛋白组成的四聚体。四个亚基组成一个跨膜的通道, 每个亚基都有IP3结合的部位, 当34个部位被IP3占据时, 受体复合物构象发生改变, 打开离子通道, 储藏在内质网中的Ca2+ 随即释放,进入胞质溶胶。29. 蛋白激酶C(protein kinase C,PKC)蛋白激酶C是G蛋白偶联受体系统中的效应物, 在非活性状态下是水溶性的,游离存在于胞质溶胶中,激活后成为膜结合的酶。蛋白激酶C的激活是脂依赖性的,需要膜脂DAG的存在,同时又是Ca2+依赖性的,需要

27、胞质溶胶中Ca2+浓度的升高。当DAG在质膜中出现时,胞质溶胶中的蛋白激酶C被结合到质膜上,然后在Ca2+的作用下被激活。同蛋白激酶A一样,蛋白激酶C属于多功能丝氨酸和苏氨酸激酶。蛋白激酶C能激活细胞质中的靶酶参与生化反应的调控, 同时也能作用于细胞核中的转录因子, 参与基因表达的调控, 不过所调控的基因多与细胞的生长和分化相关。30. 钙调蛋白(calmodulin)钙调蛋白是真核生物细胞中的胞质溶胶蛋白,由148个氨基酸组成单条多肽,相对分子质量为16.7kDa.钙调蛋白的外形似哑铃,有两个球形的末端,中间被一个长而富有弹性的螺旋结构相连,每个末端有两个Ca2+ 结构域,每个结构域可以结合

28、一个Ca2+ , 这样,一个钙调蛋白可以结合4个Ca2+ ,钙调蛋白与Ca2+ 结合后的构型相当稳定。在非刺激的细胞中钙调蛋白与Ca2+ 结合的亲和力很低;然而,如果由于刺激使细胞中Ca2+ 浓度升高时, Ca2+ 同钙调蛋白结合形成钙-钙调蛋白复合物(calcium-calmodulin complex),就会引起钙调蛋白构型的变化,增强了钙调蛋白与许多效应物结合的亲和力。31. 受体酪氨酸激酶(receptor tyrosine kinase, RTKs)RTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RTKs都是由三个部分组成的:

29、含有配体结合位点的细胞外结构域、单次跨膜的疏水螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。已发现50多种不同的RTKs,主要的几种类型包括:表皮生长因子(epidermal growth factor, EGF) 受体;血小板生长因子(platelet-derived growth factor, PDGF) 受体和巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF);胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1) 受体;神经生长因子(ne

30、rve growth factor, NGF) 受体;成纤维细胞生长因子(fibroblast growth factor, FGF) 受体;血管内皮生长因子(vascularendothelial growth factor, VEGF)受体和肝细胞生长因子 (hepatocyte growth factor, HGF) 受体等。受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部

31、装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有1020种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)。32. 胰岛素受体(insulin receptor)胰岛素受体是一个四聚体,由两个亚基和两个亚基通过二硫键连接。两个亚基位于细胞质膜的外侧,其上有胰岛素的结合位点;两个亚基是跨膜蛋白,起信号转导作用。无胰岛素结合时,受体的酪氨酸蛋白激酶没

32、有活性。当胰岛素与受体的亚基结合并改变了亚基的构型后,酪氨酸蛋白激酶才被激活,激活后可催化两个反应 使四聚体复合物中亚基特异位点的酪氨酸残基磷酸化,这种过程称为自我磷酸化(autophosphorylation);将胰岛素受体底物 (insulin receptor substrate,IRSs)上具有重要作用的十几个酪氨酸残基磷酸化,磷酸化的IRSs能够结合并激活下游效应物。33. 胰岛素受体底物(insulin receptor substrate,IRSs)能够被激活的胰岛素受体酪氨酸激酶作用的底物, 其上具有十几个酪氨酸残基可被磷酸化,磷酸化的IRSs能够结合并激活下游效应物。IRSs

33、在被胰岛素受体磷酸化以后,如同一块“磁铁”与那些具有SH2结构域的蛋白结合,根据所结合蛋白的具体结构产生不同的效应,如激活SH2蛋白的酶活性、改变蛋白质构型并同另外的蛋白结合或者引起蛋白质从细胞的一个部位转移到另一个部位。已知有三种胰岛素受体酪氨酸激酶作用的底物(IRSs)。第一种是胰岛素受体底物1(IRS1),是一种蛋白质,其上有多个(至少8个)可被受体激酶磷酸化的位点,磷酸化后可同多种效应物结合,包括:PI(3)K、Syp(一种磷酸酪氨酸磷酸酶)、Nck(一种连接蛋白)、GRB2(growth factor receptor-bound protein 2,一种通过SH2同磷酸化的酪氨酸结

34、合的连接蛋白)。第二种是Shc(是通过cDNA克隆筛选到的编码SH结构域的基因的蛋白产物),也是一种连接蛋白。Shc的酪氨酸被磷酸化后能够同GRB2结合,然后激活Ras,触发细胞的增殖。第三种底物是IRS2.IRS2的酪氨酸被磷酸化后能够同磷脂酰肌醇-3-激酶结合,将该酶激活,并影响磷脂的代谢。34. SH结构域(SH domain)SH结构域是“Src同源结构域”(Src homology domain)的缩写(Src是一种癌基因,最初在Rous sarcoma virus 中发现)。这种结构域是能够与受体酪氨酸激酶磷酸化残基紧紧结合,形成多蛋白的复合物进行信号转导。SH2大约由100个氨基

35、酸组成。SH2结构域能够与生长因子受体(如PDGF和EGF)自我磷酸化的位点结合。含有SH2结构域的蛋白也常常含有SH3结构域。SH3结构域最初也是在Src中鉴定到的由50个氨基酸组成的组件,后来在其他一些蛋白质中也发现了SH3结构域。SH3能够识别富含脯氨酸和疏水残基的特异序列的蛋白质并与之结合,从而介导蛋白与蛋白相互作用。35. 表皮生长因子(epidermal growth factor, EGF)表皮生长因子是一种小肽,由53个氨基酸残基组成, 是类EGF大家族的一个成员。EGF同应答细胞表面的特异受体结合,一旦结合,便促进受体二聚化并使细胞质位点磷酸化。被激活的受体至少可与5种具有不

36、同信号序列的蛋白结合,进行信号转导。EGF能够广泛促进细胞的增殖。36. EGF受体(EGF receptor)EGF受体是一种糖蛋白, 广泛分布于哺乳动物的上皮细胞、人的成纤维细胞、胶质细胞、角质细胞等。EGF 受体是一条含有1186个氨基酸残基的多肽链, 相对分子质量为170kDa,由三个部分组成:很大的细胞外结构域:约621个氨基酸残基,富含半胱氨酸(51个), 并形成多对二硫键,其上结合有糖基,是EGF结合的位点。跨膜区由23个氨基酸残基组成;细胞质结构域,由542个氨基酸残基组成,含有无活性的酪氨酸激酶和几个酪氨酸磷酸化的位点。37. Ras蛋白(Ras protein)Ras是大鼠

37、肉瘤(rat sarcoma,Ras)的英文缩写。Ras蛋白是原癌基因 cras的表达产物,相对分子质量为21kDa,属单体 GTP结合蛋白,具有弱的 GTP酶活性。Ras蛋白的活性状态对细胞的生长、分化、细胞骨架、蛋白质运输和分泌等都具有影响,其活性则是通过与GTP或GDP的结合进行调节。Ras的活性受两个蛋白的控制,一个是鸟苷交换因子(guanine nucleotide exchange factor, GEF),它的作用是促使GDP从Ras蛋白上释放出来,取而代之的是GTP,从而将Ras激活,GEF的活性受生长因子及其受体的影响。另一个控制 Ras蛋白活性的是GTP酶激活蛋白(GTPa

38、se activating protein, GAP),存在于正常细胞中,主要作用是激活Ras蛋白的GTP酶,将结合在Ras蛋白上的 GTP水解成GDP,成为失活型的 Ras蛋白GDP.所以在正常情况下,Ras蛋白基本上都与 GDP结合在一起,定位在细胞质膜内表面上。38. Grb2蛋白(growth factor receptor-bound protein 2)Grb2是生长因子受体结合蛋白2,又叫Ash蛋白。该蛋白参与细胞内各种受体激活后的下游调节。它能够直接与激活的表皮生长因子受体磷酸化的酪氨酸结合,参与EGF受体介导的信号转导,也能通过与Shc磷酸化的酪氨酸结合间接参与由胰岛素受体介

39、导的信号转导。Grb2能够同时与Shc、Sos结合形成Shc-Grb2-Sos复合物,并将Sos激活,激活的Sos与质膜上的Ras蛋白结合,并将其激活,引起信号级联反应。Grb2蛋白含有一个SH2结构域和两个SH3结构域,属SH蛋白。39. Sos蛋白(Sos protein)Sos蛋白是编码鸟苷释放蛋白的基因sos的产物(sos是son of sevenless 的缩写)。Sos蛋白在Ras信号转导途径中的作用是促进Ras释放GDP,结合GTP,使Ras蛋白由非活性状态转变为活性状态,所以, Sos蛋白是Ras激活蛋白。Sos蛋白不含SH结构域,不属于SH蛋白。40. 信号趋异(diverg

40、ence )信号趋异是指同一种信号与受体作用后在细胞内分成几个不同的信号途径进行传递,最典型的是受体酪氨酸激酶的信号转导。在EGF受体酪氨酸激酶信号转导中,EGF与受体结合后导致受体细胞内结构域特定部位的酪氨酸自我磷酸化,形成磷酸酪氨酸。新形成的磷酸酪氨酸作为SH2结构域的锚定位点,将具有SH2结构域的不同效应物激活。由于这些效应物自身的功能不同,因而引起不同的信号转导。如Grb2作为接头蛋白将信号经Sos蛋白传给Ras,引起MAP激酶的级联系统的信号转导。另一种具有SH2结构域的效应物是磷脂酶C,通过SH2与磷酸酪氨酸结合并被激活后可使PIP2水解产生两种第二信使,通过与Ras不同的信号转导

41、途径进行信号转导。另外,PI(3)K和Src也是具有SH2结构域并能被EGF磷酸酪氨酸激活的效应物,但是引起的信号转导途径不同。41. 窜扰(crosstalk)信号转导途径间的“窜扰”是指不同信号转导途径间的相互影响,即通常所说的“相互作用”(interaction)。在信号转导中,虽然每种体系都有自己相对独立的系统,似乎互不影响,如PKA系统、受体酪氨酸激酶系统。实际上细胞内的各种信息往往要交织在一起形成一个信息网共同起作用。例如cAMP的信号通路主要是引起细胞代谢活动的变化,特别是糖的代谢。新的研究结果表明,cAMP也能抑制一些细胞的生长,包括成纤维细胞和脂肪细胞,机理主要是阻断MAP激

42、酶级联系统。另外一个例子是Ca2+和cAMP参与的信号转导也是相互影响的。Ca2+既能够激活腺苷酸环化酶(合成cAMP),又能激活cAMP磷酸脂酶(降解cAMP)。反过来,依赖于cAMP的蛋白激酶能够使Ca2通道磷酸化,改变对Ca2释放的能力。42. 受体钝化(receptor desensitization)受体对信号分子失去敏感性称为受体钝化, 一般是通过对受体的修饰进行钝化的。如肾上腺素受体在丝氨酸和苏氨酸残基磷酸化后,则失去对肾上腺素的信号转导作用。如果钝化的受体只是那些已与信号分子结合的受体,这种现象称为同源钝化 (homologous desensitization)。如肾上腺素与

43、受体结合时,受体可在肾上腺素受体激酶的作用下发生磷酸化,抑制蛋白与磷酸化的受体结合使之钝化,失去受体作用; 此外, 肾上腺素受体也可通过cAMP依赖的蛋白激酶A磷酸化钝化。因为肾上腺素仅仅是增加细胞内cAMP水平的众多信号分子中的一种,一旦细胞内的cAMP 水平达到一定的浓度,肾上腺素也就没有什么意义了,所以将它的受体磷酸化使之钝化。这种钝化称为异源钝化(heterologous desensitization),因为钝化是通过不同受体途径的酶进行的。异源钝化不仅仅只有受体自身直接失活这一种可能的方式,在某种情况下,信号分子也可以通过改变G蛋白,使其失去信号转导作用。例如,成纤维细胞的PGE受

44、体通过Gs和AC激活cAMP途径,Gs和AC为其他途径所共有。体外培养时,加入PGE1后,cAMP升高后又下降,细胞发生钝化,同时也对其他cAMP途径的信号失去敏感。若将适应后的Gs和正常的Gs分别转移到Gs缺陷的突变细胞株的膜上进行对比观察,发现前者仍然钝化,而后者具有敏感性,因此,提示Gs发生了改变。43. 受体减量调节(receptor down-regulation)通过内吞作用减少质膜中受体量来调节信号转导,称为受体减量调节。内吞是使细胞膜上受体减少的有效办法, 细胞也因此降低了对信号分子的敏感性。实际上,许多受体被内吞后,并不被溶酶体消化,它们被逐步释放,慢慢回到细胞膜上,形成受体

45、再循环。在此过程中,始终有一部分受体滞留在细胞质中而不能到膜上发挥功能,这种现象又称为受体隔离。另外,受体内吞也包括结合有配体的受体-配体内吞,一些生长激素就是通过这样的方式被解除信号作用的。线粒体与过氧化物酶体1. 线粒体(mitochondrion)线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞动力工厂(power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基

46、因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.51.0 m, 在长度上变化很大, 一般为1.53m, 长的可达10m ,人的成纤维细胞的线粒体则更长,可达40m.不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外, 在精细胞、鞭毛、

47、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。2. 外膜(outer membrane)包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。外膜的标志酶是单胺氧化酶。3. 内膜(inner membrane)位于外膜内层的一层单位膜结构, 厚约6nm.内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴,

48、 大大增加了内膜的表面积。内膜含有三类功能性蛋白:呼吸链中进行氧化反应的酶; ATP合成酶复合物; 一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。内膜的标志酶是细胞色素氧化酶。4. 线粒体膜间隙(intermembrane space)线粒体内膜和外膜之间的间隙, 约68nm, 其中充满无定形的液体, 含有可溶性的酶、底物和辅助因子。膜间隙的标志酶是腺苷酸激酶。5. 线粒体基质( matrix)内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、 线粒体核糖体、tRNAs、rRNAs以及线粒

49、体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。6. 嵴(cristae)线粒体内膜向基质折褶形成的结构称作嵴 (cristae), 嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm.基粒又称偶联因子1(co

50、upling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。7. 蛋白质寻靶(protein targeting)游离核糖体合成的蛋白质在细胞内的定位是由前体蛋白本身具有的引导信号决定的。不同类型的引导信号可以引导蛋白质定位到特定的细胞器,如线粒体、叶绿体、细胞核和过氧化物酶体等。这些蛋白质在游离核糖体上合成释放之后需要自己寻找目的地,因此称为蛋白质寻靶。8. 翻译后转运(post-translational translocation)游离核糖体上合成的蛋白质必须等蛋白质完全合成并释放到胞质溶胶后才能被转运

51、,所以将这种转运方式称为翻译后转运。通过这种方式转运的蛋白质包括线粒体、叶绿体和细胞核的部分蛋白,以及过氧化物酶体的全部蛋白等。在游离核糖体上合成的蛋白质中有相当一部分直接存在于胞质溶胶中, 包括细胞骨架蛋白、各种反应体系的酶或蛋白等。9. 蛋白质分选(protein sorting)主要是指膜结合核糖体上合成的蛋白质, 通过信号肽,在翻译的同时进入内质网, 然后经过各种加工和修饰,使不同去向的蛋白质带上不同的标记, 最后经过高尔基体反面网络进行分选,包装到不同类型的小泡,并运送到目的地, 包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。广义的蛋白质分选也包括在游离核糖体上合成的蛋白质

52、的定位。10. 共翻译转运(co-translational translocation)膜结合核糖体上合成的蛋白质, 在它们进行翻译的同时就开始了转运,主要是通过定位信号,一边翻译,一边进入内质网, 然后再进行进一步的加工和转移。由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选,或蛋白质运输(protein trafficking)。11. 游离核糖体(free ribosomes)在蛋白质合成的全过程中, 结合有mRNA的核糖体都是游离存在的(实际上是与细胞骨架结合在

53、一起的),不与内质网结合。这种核糖体之所以不与内质网结合, 是因为被合成的蛋白质中没有特定的信号,与核糖体无关。12. 膜结合核糖体(membrane-bound ribosomes)结合有mRNA并进行蛋白质合成的核糖体在合成蛋白质的初始阶段处于游离状态,但是随着肽链的合成,核糖体被引导到内质网上与内质网结合在一起,这种核糖体称为膜结合核糖体。这种核糖体与内质网的结合是由合成的新生肽N端的信号序列决定的,而与核糖体自身无关。13. 导肽(leading peptide)又称转运肽(transit peptide)或导向序列(targeting sequence),它是游离核糖体上合成的蛋白质

54、的N-端信号。导肽是新生蛋白N-端一段大约2080个氨基酸的肽链, 通常带正电荷的碱性氨基酸(特别是精氨酸和赖氨酸)含量较为丰富, 如果它们被不带电荷的氨基酸取代就不起引导作用,说明这些氨基酸对于蛋白质的定位具有重要作用。这些氨基酸分散于不带电荷的氨基酸序列之间。转运肽序列中不含有或基本不含有带负电荷的酸性氨基酸,并且有形成两性螺旋的倾向。转运肽的这种特征性的结构有利于穿过线粒体的双层膜。不同的转运肽之间没有同源性,说明导肽的序列与识别的特异性有关,而与二级或高级结构无太大关系。导肽运送蛋白质时具有以下特点:需要受体; 消耗ATP; 需要分子伴侣; 要电化学梯度驱动; 要信号肽酶切除信号肽;

55、通过接触点进入;非折叠形式运输。14. 氧化(oxidation)葡萄糖(或糖原)在正常有氧的条件下, 经氧化产生CO2 和水,这个总过程称作糖的有氧氧化,又称细胞氧化或生物氧化。整个过程分为三个阶段: 糖氧化成丙酮酸。葡萄糖进入细胞后经过一系列酶的催化反应,最后生成丙酮酸的过程,此过程在细胞质中进行, 并且是不耗能的过程;丙酮酸进入线粒体, 在基质中脱羧生成乙酰CoA; 乙酰CoA进入三羧酸循环, 彻底氧化。15. 糖酵解(glycolysis)葡萄糖在无氧条件下, 生成丙酮酸的过程。此过程在细胞质中进行, 并且是不耗氧的过程。16三羧酸循环(citric acid cycle)由乙酰CoA

56、和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经酮戊二酸、 琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两分子的CO2 , 并释放出大量的能量。17. 电子载体(electron carriers)在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。18. 黄素蛋白(flavoproteins)黄素蛋白是由一条多肽结合1个辅基

57、组成的酶类,结合的辅基可以是FAD或FMN,它们是维生素B2的衍生物,每个辅基能够接受和提供两个质子和电子。线粒体中的黄素蛋白主要是电子传递链中NADH脱氢酶和TCA循环中的琥珀酸脱氢酶。19. 细胞色素(cytochromes)细胞色素是含有血红素辅基的一类蛋白质。血红素基团是由卟啉环结合一个铁原子(铁原子位于环的中央)构成的。与NAD+和FAD不同, 在氧化还原过程中,血红素基团的铁原子可以传递单个的电子而不必成对传递。血红素中的铁通过Fe3+和 Fe2+两种状态的变化传递电子。在还原反应时,铁原子由Fe3+状态转变成Fe2+状态;在氧化反应中,铁由Fe2+转变成Fe3+.电子传递链中至少有五种类型的细胞色素a、a3、b、c和c1,它们间的差异在于血红素基团中取代基和蛋白质氨基酸序列的不同。20. 铁硫蛋白(iron-sulfur prote

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论