版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上整式的乘除 精选习题 解答题一解答题(共30小题)1(2013春苏州期末)若2x+5y3=0,求4x32y的值2(2014春泗洪县校级月考)若28n16n=222,求n的值3(2014春句容市校级期中)一个长方形的长是4.2104cm,宽是2104cm,求此长方形的面积及周长4(2014春宝应县月考)已知2m=5,2n=7,求 24m+2n的值5(2014春寿县期中)已知am=2,an=3,求a3m+2n的值6(2014春灌云县校级月考)小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=1,这个方程在实数范围内无解,如果存在一个数i2=
2、1,那么方程x2=1可以变成x2=i2,则x=i,从而x=i是方程x2=1的两个解,小明还发现i具有以下性质:i1=i,i2=1,i3=i2i=i;i4=(i2)2=(1)2=1,i5=i4i=i,i6=(i2)3=(1)3=1,i7=i6i=i,i8=(i4)2=1,请你观察上述等式,根据你发现的规律填空:i4n+1=,i4n+2=,i4n+3=,i4n+4=(n为自然数)7(2008春昆山市期末)已知:2x=4y+1,27y=3x1,求xy的值8(2012春化州市校级期末)已知39m27m=316,求m的值9(2013秋万州区校级月考)已知:1624326=22x1,(10)2y=1012
3、,求2x+y的值10(2014春桓台县校级月考)已知x3=m,x5=n用含有m、n的代数式表示x1411(2014春石景山区期末)2x6y2x3y+(25x8y2)(xy)12(2011秋长春期中)计算:(2x3y)(3xy24xy+1)13(2a2)(3ab25ab3)14已知ab2=1,求(ab)(a2b5ab3b)的值15化简:2a3(a216(2015春宝应县月考)我们规定一种运算:=adbc,例如=3645=2,=4x+6按照这种运算规定,当x等于多少时,=017(2013秋东莞期末)计算:(a1)(a2+a+1)18(2014春招远市期末)计算:(3a+1)(2a3)(6a5)(a
4、4)19(2014春金牛区期末)若(x2+px)(x23x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(2p2q)2+(3pq)1+p2012q2014的值20(2014春江山市校级期中)若(x3)(x+m)=x2+nx15,求的值21(2014秋太和县期末)计算:(8a3b5a2b2)4ab22(2014秋宜宾校级期中)已知5x=36,5y=2,求5x2y的值23(2010秋南安市期末)计算:(3a3b9a2b221a2b3)3a2b24(2014春上街区校级期中)(2a+b)4(2a+b)225(2014春南海区校级月考)已知:xm=3,xn=2,求:(1)xm+n的值
5、;(2)x2m3n的值26(2010西宁)计算:()1(3.14)0+0.2544427(2010漳州)计算:(2)0+(1)201028(2010晋江市)计算:|4|(3)22010029(2009长沙)计算:(2)2+2(3)+()130(2008湘潭)计算:|1|+(3)0()1整式的乘除 精选习题 解答题参考答案与试题解析一解答题(共30小题)1(2013春苏州期末)若2x+5y3=0,求4x32y的值【考点】同底数幂的乘法;幂的乘方与积的乘方菁优网版权所有【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即
6、可【解答】解:4x32y=22x25y=22x+5y2x+5y3=0,即2x+5y=3,原式=23=8【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键2(2014春泗洪县校级月考)若28n16n=222,求n的值【考点】同底数幂的乘法菁优网版权所有【分析】把等号左边的数都能整理成以2为底数的幂相乘,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等列式求解即可【解答】解:28n16n,=223n24n,=27n+1,28n16n=222,7n+1=22,解得n=3【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键3(2014春句容市校级期
7、中)一个长方形的长是4.2104cm,宽是2104cm,求此长方形的面积及周长【考点】同底数幂的乘法菁优网版权所有【专题】计算题【分析】根据长方形的面积=长宽,周长等于四边之和,代入长和宽的值即可得出答案【解答】解:面积=长宽=4.21042104=8.4108cm2周长=2(长+宽)=2(4.2104+2104)=1.24105cm综上可得长方形的面积为8.4108cm2周长为1.24105cm【点评】此题考查了同底数幂的乘法及加法运算,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,难度一般4(2014春宝应县月考)已知2m=5,2n=7,求 24m+2n的值【考
8、点】同底数幂的乘法;幂的乘方与积的乘方菁优网版权所有【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘计算即可【解答】解:2m=5,2n=7,又24m=625,22n=49,24m+2n=62549=30625故答案为30625【点评】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方,解题时记准法则是关键5(2014春寿县期中)已知am=2,an=3,求a3m+2n的值【考点】幂的乘方与积的乘方;同底数幂的乘法菁优网版权所有【分析】由a3m+2n根据同底数幂的乘法化成a3ma2n,再根据幂的乘方化成(am)3(an)2,代入求出即可【解答
9、】解:am=2,an=3,a3m+2n=a3ma2n=(am)3(an)2=2332=89=72【点评】本题考查了同底数幂的乘法,幂的乘方,有理数的混合运算,关键是把原式化成(am)3(an)2,用了整体代入6(2014春灌云县校级月考)小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=1,这个方程在实数范围内无解,如果存在一个数i2=1,那么方程x2=1可以变成x2=i2,则x=i,从而x=i是方程x2=1的两个解,小明还发现i具有以下性质:i1=i,i2=1,i3=i2i=i;i4=(i2)2=(1)2=1,i5=i4i=i,i6=(i2)3=(1)3=1,
10、i7=i6i=i,i8=(i4)2=1,请你观察上述等式,根据你发现的规律填空:i4n+1=i,i4n+2=1,i4n+3=i,i4n+4=1(n为自然数)【考点】幂的乘方与积的乘方菁优网版权所有【专题】阅读型【分析】根据所给例子找出规律,再把所求式子与已知相联系即可得出答案【解答】解:i1=i,i2=1,i3=i2i=i;i4=(i2)2=(1)2=1,从n=1开始,4个一次循环i4n+1=i,i4n+2=1,i4n+3=i(n为自然数),i4n+4=1故答案为:i,1,i1【点评】本题是信息给予题,主要考查了幂的乘方的性质,读懂题目信息并正确利用性质是解答本题的关键7(2008春昆山市期末
11、)已知:2x=4y+1,27y=3x1,求xy的值【考点】幂的乘方与积的乘方菁优网版权所有【分析】先都转化为同底数的幂,根据指数相等列出方程,解方程求出x、y的值,然后代入xy计算即可【解答】解:2x=4y+1,2x=22y+2,x=2y+2 又27y=3x1,33y=3x1,3y=x1联立组成方程组并求解得,xy=3【点评】本题主要考查幂的乘方的性质的逆用:amn=(am)n(a0,m,n为正整数),根据指数相等列出方程是解题的关键8(2012春化州市校级期末)已知39m27m=316,求m的值【考点】幂的乘方与积的乘方;同底数幂的乘法菁优网版权所有【分析】根据幂的乘方,底数不变指数相乘;同
12、底数幂相乘,底数不变指数相加计算,再根据指数相等列式求解即可【解答】解:39m27m,=332m33m,=31+5m,31+5m=316,1+5m=16,解得m=3【点评】本题主要考查了幂的有关运算幂的乘方法则:底数不变指数相乘;幂的乘法法则:底数不变指数相加9(2013秋万州区校级月考)已知:1624326=22x1,(10)2y=1012,求2x+y的值【考点】幂的乘方与积的乘方;同底数幂的乘法菁优网版权所有【分析】运用同底数幂的乘法和幂的乘方的性质,求x,y的值,再代入求2x+y的值【解答】解:1624326=22x1,(10)2y=1012,282626=22x1,102y=1012,
13、2x1=20,2y=12解得x=,y=62x+y=2+6=21+6=27故答案为27【点评】本题主要考查幂的乘方和同底数幂的乘法,熟练掌握运算性质是解题的关键10(2014春桓台县校级月考)已知x3=m,x5=n用含有m、n的代数式表示x14【考点】幂的乘方与积的乘方;同底数幂的乘法菁优网版权所有【分析】根据幂的乘方和同底数幂的乘法的性质可得出m、n的代数式【解答】解:根据题意可把14次方分为9次方加5次方,x3=m,x5=n,x14=x9x5=(x3)3x5=m3n【点评】本题考查幂的乘方和同底数幂的乘法,属于基础题,关键在于掌握幂的乘方的运用11(2014春石景山区期末)2x6y2x3y+
14、(25x8y2)(xy)【考点】单项式乘单项式菁优网版权所有【分析】利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式求解即可【解答】解:2x6y2x3y+(25x8y2)(xy)=2x9y3+25x9y2,=27x9y2【点评】本题主要考查了单项式乘单项式,解题的关键是熟记单项式乘单项式的法则12(2011秋长春期中)计算:(2x3y)(3xy24xy+1)【考点】单项式乘多项式菁优网版权所有【专题】计算题【分析】利用单项式乘以多项式中的每一项后把所得的积相加即可得到结果【解答】解:(2x3y)(3xy24xy+1)=2x3
15、y3xy2+(2x3y)4xy+(2x3y)=6x4y3+8x4y22x3y【点评】本题考查了单项式乘以多项式的知识,属于基础题,比较简单13(2a2)(3ab25ab3)【考点】单项式乘多项式菁优网版权所有【分析】单项式乘以多项式时用单项式和多项式中的每一项相乘,然后再相加即可【解答】解:(2a2)(3ab25ab3)=(2a2)3ab2(2a2)5ab3=6a3b210a3b3【点评】本题考查了单项式乘以多项式的知识,解题的关键是牢记法则并熟记有关幂的性质14已知ab2=1,求(ab)(a2b5ab3b)的值【考点】单项式乘多项式菁优网版权所有【分析】原式利用单项式乘以多项式法则计算,变形
16、后将已知等式代入计算即可求出值【解答】解:ab2=1,原式=a3b6+a2b4+ab2=(ab2)3+(ab2)2+ab2=1+11=1【点评】此题考查了因式分解的应用,利用了整体代入的思想,是一道基本题型15化简:2a3(a2【考点】单项式乘单项式;幂的乘方与积的乘方菁优网版权所有【分析】先计算幂的乘方,再根据单项式的乘法法则计算即可【解答】解:2a3(a2=2a3a2=2a5【点评】本题考查了幂的乘方以及单项式与单项式相乘,熟练掌握运算法则是解题的关键16(2015春宝应县月考)我们规定一种运算:=adbc,例如=3645=2,=4x+6按照这种运算规定,当x等于多少时,=0【考点】多项式
17、乘多项式;解一元一次方程菁优网版权所有【专题】新定义【分析】根据新定义运算可得方程(x+1)(x1)(x2)(x+3)=0,根据多项式乘多项式的法则将方程展开,再移项、合并同类项,系数化为1即可求解【解答】解:=adbc,=0,(x+1)(x1)(x2)(x+3)=0,x21(x2+x6)=0,x21x2x+6=0,x=5,x=5故当x等于5时,=0【点评】考查了多项式乘多项式,解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化17(2013秋东莞期末)计算:(a1)(a2+a+1)【
18、考点】多项式乘多项式菁优网版权所有【分析】根据多项式乘多项式用第一个多项式的每一项乘第二个多项式的每一项,把所得的积相加,可得答案【解答】解:原式=aa2+aa+a1a2a1=a31【点评】本题考查了多项式乘多项式,根据法则计算是解题关键18(2014春招远市期末)计算:(3a+1)(2a3)(6a5)(a4)【考点】多项式乘多项式菁优网版权所有【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可【解答】解:(3a+1)(2a3)(6a5)(a4)=6a29a+2a36a2+24a+5a20=22a23【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运
19、算结果的符号,是一道基础题19(2014春金牛区期末)若(x2+px)(x23x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(2p2q)2+(3pq)1+p2012q2014的值【考点】多项式乘多项式菁优网版权所有【分析】(1)形开式子,找出x项与x3令其系数等于0求解(2)把p,q的值入求解【解答】解:(1)(x2+px)(x23x+q)=x4+(p3)x3+(q3p)x2+(qp+1)x+q,积中不含x项与x3项,P3=0,qp+1=0p=3,q=,(2)(2p2q)2+(3pq)1+p2012q2014=232()2+()2=36+=35【点评】本题主要考查了多项式乘
20、多项式,解题的关键是正确求出p,q的值20(2014春江山市校级期中)若(x3)(x+m)=x2+nx15,求的值【考点】多项式乘多项式菁优网版权所有【专题】计算题【分析】首先把)(x3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解【解答】解:(x3)(x+m)=x2+(m3)x3m=x2+nx15,则解得:=【点评】本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键21(2014秋太和县期末)计算:(8a3b5a2b2)4ab【考点】整式的除法菁优网版权所有【分析】利用多项式除以单项式的运算法则进行运算即可
21、【解答】解:原式=8a3b4ab5a2b24ab=【点评】本题考查了整式的除法,牢记运算法则及运算律是解答此类题目的关键22(2014秋宜宾校级期中)已知5x=36,5y=2,求5x2y的值【考点】同底数幂的除法;幂的乘方与积的乘方菁优网版权所有【分析】根据同底数幂的除法底数不变指数相减,可得答案【解答】解:(5y)2=52y=4,5x2y=5x52y=364=9【点评】本题考查了同底数幂的除法,底数不变指数相减23(2010秋南安市期末)计算:(3a3b9a2b221a2b3)3a2b【考点】整式的除法菁优网版权所有【分析】本题是整式的除法,多项式除以单项式可以是将多项式3a3b9a2b22
22、1a2b3中的每一个项分别除以单项式3a2b即可【解答】解:原式=3a3b3a2b9a2b23a2b21a2b33a2b=a3b7b2【点评】本题考查了整式的除法整式的除法法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加24(2014春上街区校级期中)(2a+b)4(2a+b)2【考点】同底数幂的除法菁优网版权所有【分析】运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开【解答】解:(2a+b)4(2a+b)2=(2a+b)2=4a2+4ab+b2【点评】本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则25(2014春南海区校级
23、月考)已知:xm=3,xn=2,求:(1)xm+n的值;(2)x2m3n的值【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方菁优网版权所有【分析】运用同底数幂的乘法与除法以及幂的乘方运算即可【解答】解:(1)xm=3,xn=2,xm+n=xmxn=32=6,(2)xm=3,xn=2,x2m3n=(xm)2(xn)3=98=,【点评】此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则26(2010西宁)计算:()1(3.14)0+0.25444【考点】负整数指数幂;有理数的乘方;零指数幂菁优网版权所有【专题】计算题【分析】此题涉及到负整数指数幂、零指数幂、乘方三个知识点,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得结果【解答】解:原式=21+=21+1=2【点评】本题考查实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司财务员工工作总结8篇
- 乡村医生述职报告9篇
- 团员个人年度工作总结三篇
- 2024年度企业员工全面体检服务合同3篇
- 2024年甲乙丙丁四方关于建立物流通道的合同
- 2024年北师大新版九年级化学上册月考试卷
- 2025年人教五四新版高一数学上册月考试卷
- 儿童心理视角下的消费习惯养成
- 2024年度公立医院医务人员劳动聘用合同范本3篇
- 农业金融科技小微企业的金融创新机会探讨
- Pep小学英语六年级上册教案-全册
- 北师大版二年级数学下册全册10套试卷(附答案)
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 2024-2030年中国抹茶行业市场发展趋势与前景展望战略分析报告
- 重庆市2024年高三年级高考一模化学试题(含答案)
- 《诫子书》考点集训2(含答案)- 2024年中考语文一轮复习
- 急性化脓性中耳炎病人的护理课件
- 临床医学研究生毕业答辩模板
- 中药煎煮协议书
- 期末测试卷(试题)-2023-2024学年人教精通版英语五年级上册
- 2024年高考语文阅读之王愿坚小说专练(解析版)
评论
0/150
提交评论