版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、INTRODUCTION TO MINITAB VERSION 131Worksheet Conventions and Menu StructuresMinitab InteroperabilityGraphic CapabilitiesParetoHistogramBox PlotScatter PlotStatistical CapabilitiesCapability AnalysisHypothesis TestContingency TablesANOVADesign of Experiments (DOE) Minitab Training Agenda Worksheet Fo
2、rmat and StructureSession WindowWorksheet Data WindowMenu BarTool BarText Column C1-T(Designated by -T)Numeric Column C3(No Additional Designation) Data Window Column ConventionsDate Column C2-D(Designated by -D)Column Names(Type, Date, Count & AmountEntered Data for Data Rows 1 through 4Data Entry
3、ArrowData Rows Other Data Window Conventions Menu Bar - Menu ConventionsHot Key Available (Ctrl-S)Submenu Available ( at the end of selection) Menu Bar - File MenuKey FunctionsWorksheet File ManagementSavePrintData Import Menu Bar - Edit MenuKey FunctionsWorksheet File EditsSelectDeleteCopyPasteDyna
4、mic Links Menu Bar - Manip MenuKey FunctionsData ManipulationSubset/SplitSortRankRow Data ManipulationColumn Data Manipulation Menu Bar - Calc MenuKey FunctionsCalculation CapabilitiesColumn CalculationsColumn/Row StatisticsData StandardizationData ExtractionData Generation Menu Bar - Stat MenuKey F
5、unctionsAdvanced Statistical Tools and GraphsHypothesis TestsRegressionDesign of ExperimentsControl ChartsReliability Testing Menu Bar - Graph MenuKey FunctionsData Plotting CapabilitiesScatter PlotTrend PlotBox PlotContour/3 D plottingDot PlotsProbability PlotsStem & Leaf Plots Menu Bar - Data Wind
6、ow Editor MenuKey FunctionsAdvanced Edit and Display OptionsData BrushingColumn SettingsColumn Insertion/MovesCell InsertionWorksheet SettingsNote: The Editor Selection is Context Sensitive. Menu selections will vary for:Data WindowGraphSession WindowDepending on which is selected. Menu Bar - Sessio
7、n Window Editor MenuKey FunctionsAdvanced Edit and Display OptionsFont Connectivity Settings Menu Bar - Graph Window Editor MenuKey FunctionsAdvanced Edit and Display OptionsBrushing Graph ManipulationColorsOrientationFont Menu Bar - Window MenuKey FunctionsAdvanced Window Display OptionsWindow Mana
8、gement/Display Toolbar Manipulation/Display Menu Bar - Help MenuKey FunctionsHelp and TutorialsSubject SearchesStatguide Multiple TutorialsMinitab on the WebMINITAB INTEROPERABILITY18 Minitab InteroperabilityExcelMinitabPowerPoint Starting with Excel.Load file “Sample 1” in Excel. Starting with Exce
9、l.The data is now loaded into Excel. Starting with Excel.Highlight and Copy the Data. Move to Minitab.Open Minitab and select the column you want to paste the data into. Move to Minitab.Select Paste from the menu and the data will be inserted into the Minitab Worksheet. Use Minitab to do the Analysi
10、s.Lets say that we would like to test correlation between the Predicted Workload and the actual workload.Select Stat Regression. Fitted Line Plot. Use Minitab to do the Analysis.Minitab is now asking for us to identify the columns with the appropriate date.Click in the box for “Response (Y): Note th
11、at our options now appear in this box.Select “Actual Workload” and hit the select button.This will enter the “Actual Workload” data in the Response (Y) data field. Use Minitab to do the Analysis.Now click in the Predictor (X): box. Then click on “Predicted Workload” and hit the select button This wi
12、ll fill in the “Predictor (X):” data field.Both data fields should now be filled.Select OK. Use Minitab to do the Analysis.Minitab now does the analysis and presents the results.Note that in this case there is a graph and an analysis summary in the Session WindowLets say we want to use both in our P
13、owerPoint presentation. Transferring the Analysis.Lets take care of the graph first.Go to Edit. Copy Graph. Transferring the Analysis.Open PowerPoint and select a blank slide.Go to Edit. Paste Special. Transferring the Analysis.Select “Picture (Enhanced Metafile) This will give you the best graphics
14、 with the least amount of trouble. Transferring the Analysis.Our Minitab graph is now pasted into the powerpoint presentation. We can now size and position it accordingly. Transferring the Analysis.Now we can copy the analysis from the Session window.Highlight the text you want to copy.Select Edit.
15、Copy. Transferring the Analysis.Now go back to your powerpoint presentation.Select Edit. Paste. Transferring the Analysis.Well we got our data, but it is a bit large.Reduce the font to 12 and we should be ok. Presenting the results.Now all we need to do is tune the presentation.Here we position the
16、graph and summary and put in the appropriate takeaway. Then we are ready to present.Graphic Capabilities37 Pareto Chart.Lets generate a Pareto Chart from a set of data.Go to File Open Project. Load the file Pareto.mpj.Now lets generate the Pareto Chart. Pareto Chart.Go to:Stat Quality ToolsPareto Ch
17、art. Pareto Chart.Fill out the screen as follows:Our data is already summarized so we will use the Chart Defects table. Labels in “Category”Frequencies in “Quantity”.Add title and hit OK. Pareto Chart.Minitab now completes our pareto for us ready to be copied and pasted into your PowerPoint presenta
18、tion. Histogram.Lets generate a Histogram from a set of data.Go to File Open Project. Load the file 2_Correlation.mpj.Now lets generate the Histogram of the GPA results. Histogram.Go to:Graph Histogram Histogram.Fill out the screen as follows:Select GPA for our X value Graph VariableHit OK. Histogra
19、m.Minitab now completes our histogram for us ready to be copied and pasted into your PowerPoint presentation.This data does not look like it is very normal.Lets use Minitab to test this distribution for normality. Histogram.Go to:Stat Basic StatisticsDisplay Descriptive Statistics. Histogram.Fill ou
20、t the screen as follows:Select GPA for our Variable.Select Graphs. Histogram.Select Graphical Summary.Select OK.Select OK again on the next screen. Histogram.Note that now we not only have our Histogram but a number of other descriptive statistics as well.This is a great summary slide.As for the nor
21、mality question, note that our P value of .038 rejects the null hypothesis (P.05). So, we conclude with 95% confidence that the data is not normal. Histogram.Lets look at another “Histogram” tool we can use to evaluate and present data.Go to File Open Project. Load the file overfill.mpj. Histogram.G
22、o to:Graph Marginal Plot Histogram.Fill out the screen as follows:Select filler 1 for the Y Variable.Select head for the X VariableSelect OK. Histogram.Note that now we not only have our Histogram but a dot plot of each head data as well.Note that head number 6 seems to be the source of the high rea
23、dings.This type of Histogram is called a “Marginal Plot”. Boxplot.Lets look at the same data using a Boxplot. Boxplot.Go to:Stat Basic StatisticsDisplay Descriptive Statistics. Boxplot.Fill out the screen as follows:Select “filler 1” for our Variable.Select Graphs. Boxplot.Select Boxplot of data.Sel
24、ect OK.Select OK again on the next screen. Boxplot.We now have our Boxplot of the data. Boxplot.There is another way we can use Boxplots to view the data.Go to:Graph Boxplot. Boxplot.Fill out the screen as follows:Select “filler 1” for our Y Variable.Select “head” for our X Variable.Select OK. Boxpl
25、ot.Note that now we now have a box plot broken out by each of the various heads.Note that head number 6 again seems to be the source of the high readings. Scatter plot.Lets look at data using a Scatterplot.Go to File Open Project. Load the file 2_Correlation.mpj.Now lets generate the Scatterplot of
26、the GPA results against our Math and Verbal scores. Scatter plot.Go to:Graph Plot. Scatter Plot.Fill out the screen as follows:Select GPA for our Y Variable.Select Math and Verbal for our X Variables.Select OK when done. Scatter plot.We now have two Scatter plots of the data stacked on top of each o
27、therWe can display this better by tiling the graphs. Scatter plot.To do this:Go to WindowTile. Scatter plot.Now we can see both Scatter plots of the data Scatter plot.There is another way we can generate these scatter plots.Go to:Graph Matrix Plot. Scatter Plot.Fill out the screen as follows:Click i
28、n the “Graph variables” blockHighlight all three available data setsClick on the “Select” button.Select OK when done. Scatter plot.We now have a series of Scatter plots, each one corresponding to a combination of the data sets availableNote that there appears to be a strong correlation between Verba
29、l and both Math and GPA data.Minitab Statistical Tools71PROCESS CAPABILITY ANALYSIS72Lets do a process capability study.Open Minitab and load the file Capability.mpj.SETTING UP THE TEST.Go to Stat Quality Tools. Capability Analysis (Weibull).Select “Torque” for our single data column.Enter a lower s
30、pec of 10 and an upper spec of 30. Then select “OK”.SETTING UP THE TEST.Note that the data does not fit the normal curve very well.Note that the Long Term capability (Ppk) is 0.43. This equates to a Z value of 3*0.43=1.29 standard deviations or sigma values.This equates to an expected defect rate PP
31、M of 147,055.INTERPRETING THE DATA.HYPOTHESIS TESTING77Load the file normality.mpj.Setting up the test in MinitabChecking the Data for Normality.Its important that we check for normality of data samples.Lets see how this works.Go to STAT. Basic Statistics. Normality Test.Set up the TestWe will test
32、the “Before” column of data.Check Anderson-DarlingClick OKAnalyzing the ResultsSince the P value is greater than .05 we can assume the “Before” data is normalNow repeat the test for the “After” Data (this is left to the student as a learning exercise.)Checking for equal variance.We now want to see i
33、f we have equal variances in our samples.To perform this test, our data must be “stacked”.To accomplish this go to Manip Stack Stack Columns.Select both of the available columns (Before and After) to stack.Type in the location where you want the stacked data. In this example we will use C4.Type in t
34、he location where you want the subscripts stored In this example we will use C3.Select OK.Checking for equal variance.Now that we have our data stacked, we are ready to test for equal variances.Go to Stat ANOVA. Test for equal Variances.Checking for equal variance.Setting up the test.Our response wi
35、ll be the actual receipt performance for the two weeks we are comparing. In this case we had put the stacked data in column C4.Our factors is the label column we created when we stacked the data (C3).We set our Confidence Level for the test (95%).Then select “OK”.Here, we see the 95% confidence inte
36、rvals for the two populations. Since they overlap, we know that we will fail to reject the null hypothesis.The F test results are shown here. We can see from the P-Value of .263 that again we would fail to reject the null hypothesis. Note that the F test assumes normalityNote that we get a graphical
37、 summary of both sets of data as well as the relevant statistics. Analyzing the data.Levenes test also compares the variance of the two samples and is robust to nonnormal data. Again, the P-Value of .229 indicates that we would fail to reject the null hypothesis.Here we have box plot representations
38、 of both populations.Lets test the data with a 2 Sample t Test- -Under Stat Basic Statistics. We see several of the hypothesis tests which we discussed in class. In this example we will be using a 2 Sample t Test.Go to Stat. Basic Statistics. 2 Sample t.Since we already have our data stacked, we wil
39、l load C4 for our samples and C3 for our subscripts.Setting up the test.Since we have already tested for equal variances, we can check off this boxNow select Graphs.Setting up the test.We see that we have two options for our graphical output. For this small a sample, Boxplots will not be of much val
40、ue so we select “Dotplots of data” and hit “OK”. Hit OK again on the next screen.In the session window we have each populations statistics calculated for us.Note that here we have a P value of .922. We therefore find that the data does not support the conclusion that there is a significant differenc
41、e between the means of the two populations. Interpreting the results.The dotplot shows how close the datapoints in the two populations fall to each other. The close values of the two population means (indicated by the red bar) also shows little chance that this hypothesis could be rejected by a larg
42、er sample Interpreting the results.Paired Comparisons In paired comparisons we are trying to “pair” observations or treatments. An example would be to test automatic blood pressure cuffs and a nurse measuring the blood pressure on the same patient using a manual instrument. It can also be used in me
43、asurement system studies to determine if operators are getting the same mean value across the same set of samples. Lets look at an example: 2_Hypothesis_Testing_Shoe_wear.mpj2_Hypothesis_Testing_Shoe_wear.mpj In this example we are trying to determine if shoe material “A” wear rate is different from
44、 shoe material “B”. Our data has been collected using ten boys, whom were asked to wear one shoe made from each material.Ho: Material “A” wear rate = Material “B” wear rateHa: Material “A” wear rate Material “B” wear rate Paired ComparisonGo to Stat. Basic Statistics Paired t. Paired ComparisonSelec
45、t the samplesGo to Graphs. Paired ComparisonSelect the Boxplot for our graphical output.Then select OK. Paired ComparisonWe see how the 95% confidence interval of the mean relates to the value we are testing. In this case, the value falls outside the 95% confidence interval of the data mean. This gi
46、ves us confirmation that the shoe materials are significantly different. CONTINGENCY TABLES(CHI SQUARE)98Entering the data.Enter the data in a table format. For this example, load the file Contingency Table.mpj.Lets set up a contingency table.Contingency tables are found under Stat. Tables Chi Squar
47、e Test. Select the columns which contain the table. Then select “OK”Setting up the test.Note that you will have the critical population and test statistics displayed in the session window. Minitab builds the table for you. Note that our original data is presented and directly below, Minitab calculat
48、es the expected values. Here, Minitab calculates the Chi Square statistic for each data point and totals the result. The calculated Chi Square statistic for this problem is 30.846. Performing the Analysis.ANalysis Of VArianceANOVALets set up the analysisLoad the file Anova example.mpjStack the data
49、in C4 and place the subscripts in C5Set up the analysis.Select StatANOVAOne waySelect C4 Responses C5 FactorsThen select Graphs.Set up the analysis.Choose boxplots of data.Then OKSet up the analysis.Note that the P value is less than .05that means that we reject the null hypothesisAnalyzing the resu
50、lts.Lets Look At Main Effects.Choose StatANOVAMain Effects Plot.Main EffectsSelectC4 ResponseC5 FactorsOKAnalyzing Main Effects.Liters/Hr 3Liters/Hr 2Liters/Hr 12221201918FormulationLiters Per HMain Effects Plot - Data Means for Liters Per HFormulation 1 Has Lowest Fuel ConsumptionDESIGN OF EXPERIME
51、NTS (DOE) FUNDAMENTALS112First Create an Experimental Design.Go to StatDOE Factorial.Create Factorial Design.113First Create an Experimental Design.Select 2 Level Factorial design with 3 factorsThen go to Display Available Designs.114Bowling Example (continued)We can now see the available experiment
52、al designs. We will be using the Full (Factorial) for 3 factors and we can see that it will require 8 runsNow, select OK and go back to the main screen.Once at the main screen select Designs.115Bowling Example (continued)Select your design. We will be using the Full (Factorial) and again we can see
53、that it will require 8 runsNow, select OK and go back to the main screen.Once at the main screen select Factors.116Bowling Example (continued)Fill in the names for your factors. Then fill in the actual conditions for low (-) or high (+)Now, select OK and go back to the main screen.Once at the main s
54、creen select Options.117Bowling Example (continued)Remove the option to Randomize Runs. Now, select OK and go back to the main screen.Once at the main screen select OK.118Bowling Example (continued)Minitab has now designed our experiment for us. Now, type your Data from each of your experimental tre
55、atments into C8.We are now ready to analyze the results119Bowling Example (continued)Go toStat.DOEFactorial.Analyze Factorial Design.120Bowling Example (continued)Highlight your Data column and use Select to place it in the Responses box. Then, select the Terms Option.121Bowling Example (continued)N
56、ote that Selected Terms has all of the available choices already selected. We need do nothing further. Select OK.Then, at the main screen select Graphs122Bowling Example (continued)Select your Effects Plots and reset your Alpha to .05.Select OK to return to the main screen and then select OK again.123Bowling Example (continued)Note that only one effect has a significance greater than 95%.All the remaining factors and
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论