一元二次方程的解法_第1页
一元二次方程的解法_第2页
一元二次方程的解法_第3页
一元二次方程的解法_第4页
一元二次方程的解法_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一元二次方程的解法一元二次方程的解法你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法? ?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗? ?方程的左边是完全平方式方程的左边是完全平方式, ,右边是非右边是非负数负数; ;即形如即形如x x2 2=a=a(a0)(a0) 1212xa,xaxa,xa1. 1.化化1: 1:把二次项系数化为把二次项系数化为1 1; ;2.2.移项移项: :把常数项移到方程的右边把常数项移到方程的右边; ;3.3.配方配方: :方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平

2、方; ;4.4.变形变形: :化成化成5.5.开平方开平方,求解求解( (x xm m ) )a a+ += =2 2“配方法配方法”解方程的基本步骤解方程的基本步骤用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是: :1. 1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程: : axax2 2+bx+c=0(a0).+bx+c=0(a0). 2.b2.b2 2-4ac0.-4ac0. .0 04ac4acb b. .2a2a4ac4acb bb bx x2 22 21.1.用因式分解法的用因式分解法的条件条件是是: :方程左边能够方程左边能够 分解分解, ,而右边等于

3、零而右边等于零; ;2.2.理论理论依据依据是是: :如果两个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于零那么至少有一个因式等于零. .因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤: :一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解; ;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程; ;四解四解-写出方程两个解写出方程两个解; ;请用四种方法解下列方程请用四种方法解下列方程: : 4(x 4(x1)1)2 2 = (x= (x5)5)2 2先考虑开平方法先考虑开平方法, ,再用因式分解法再用因式分

4、解法; ;最后才用公式法和配方法最后才用公式法和配方法; ;3.3.公式法公式法:221.222.530按按要要求求解解下下列列方方程程:因因式式分分解解法法: 3 3配配方方法法: 2 2xx xxx 2112112 2xxyyy总结:方程中有括号时,应总结:方程中有括号时,应先用整体思想先用整体思想考虑有考虑有没有简单方法,若看不出合适的方法时,则把它没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。去括号并整理为一般形式再选取合理的方法。 x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0

5、 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2) 5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2) (x-2)2 2=2(x-2)=2(x-2) 适合运用直接开平方法适合运用直接开平方法 ; 适合运用因式分解法适合运用因式分解法 ; 适合运用公式法适合运用公式法 ; 适合运用配方法适合运用配方法 . . 用最好的方法求解下列方程用最好的方法求解下列方程1)1)(3x-23x-2)-49=0 -49=0 2 2) )(3x-43x-4)= =(4x-34x-3) 3) 4y=13)

6、 4y=1 y y32选择适当的方法解下列方程选择适当的方法解下列方程: : x x2 22 21 1) )1 1) )( (x x( (x x8 81 1) )( (3 3x x1 1) )( (2 2x x7 78 84 49 97 7) )x x( (2 2x x6 6 2 2x x7 7) )x x( (3 3x x5 59 9x x2 2) )( (x x4 4 4 4x x1 13 3x x3 32 2x x5 5x x2 2 1 1x x2 25 51 16 61 12 22 22 22 22 22 22 2 一般地,当一元二次方程一次项系数一般地,当一元二次方程一次项系数为为0

7、 0时(时(axax2 2+c=0+c=0),应选用),应选用直接开平方直接开平方法法;若常数项为;若常数项为0 0( axax2 2+bx=0+bx=0),应选),应选用用因式分解法因式分解法;若一次项系数和常数项;若一次项系数和常数项都不为都不为0 (0 (axax2 2+bx+c=0+bx+c=0),先化为一般式,),先化为一般式,看一边的整式是否容易因式分解,若容看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用易,宜选用因式分解法,不然选用公式公式法法;不过当二次项系数是;不过当二次项系数是1 1,且一次项系,且一次项系数是偶数时,用配方法也较简单。数是偶数时,用配方法也较简单。我的发现 公式法虽然是万能的,对任何一元二公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,次方程都适用,但不一定是最简单的,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论