2021年中考数学真题分项汇编专题13 二次函数图象性质与应用(共38题)-(解析版)_第1页
2021年中考数学真题分项汇编专题13 二次函数图象性质与应用(共38题)-(解析版)_第2页
2021年中考数学真题分项汇编专题13 二次函数图象性质与应用(共38题)-(解析版)_第3页
2021年中考数学真题分项汇编专题13 二次函数图象性质与应用(共38题)-(解析版)_第4页
2021年中考数学真题分项汇编专题13 二次函数图象性质与应用(共38题)-(解析版)_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021年中考数学真题分项汇编【全国通用】(第01期)专题13二次函数图象性质与应用(共38题)姓名:_ 班级:_ 得分:_一、单选题1(2021·山东泰安市·中考真题)将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )ABCD【答案】B【分析】根据二次函数平移性质“左加右减,上加下减”,得出将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线的解析式,代入求值即可.【详解】解:将抛物线化为顶点式,即:,将抛物线的图象向右平移1个单位,再向下平移2个单位,根据函数图像平移性质:左加右减,上加下减得:,A选项代入,不符合;B选项代入, ,符

2、合;C选项代入, ,不符合;D选项代入,不符合;故选:B【点睛】本题主要考查函数图像平移的性质,一般先将函数化为顶点式:即的形式,然后按照“上加下减,左加右减”的方式写出平移后的解析式,能够根据平移方式写出平移后的解析式是解题关键2(2021·浙江绍兴市·中考真题)关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值6【答案】D【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=2>0,顶点坐标为(4,6),函数有最小值为6故选:

3、D【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值3(2021·四川凉山彝族自治州·中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D【答案】D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为

4、,故B正确;由于开口向上,对称轴为直线x=-1,则点(1,0)关于直线x=-1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正确;由图像可知:当x=-2时,y0,即,故D错误;故选D【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)4(2021·陕西中

5、考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大【答案】C【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x

6、值的增大而增大,故D选项不符合题意;故选:C【点睛】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键5(2021·四川眉山市·中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )ABCD【答案】A【分析】先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式【详解】解:当x=0时,y=5,C(0,5);设新抛物线上的点的坐标为(x,y),原抛物线与新抛物线关于点C成中心对称,由,;对应的原抛物线上点的坐标

7、为;代入原抛物线解析式可得:,新抛物线的解析式为:;故选:A【点睛】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等6(2021·浙江杭州市·中考真题)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质以下函数和具有性质的是( )A和B和C和D和【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项【详解】解:当

8、时,函数值分别为和,若存在实数,使得,对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;对于B选项则有,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;故选A【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键7(2021·上海中考真题)将抛物线向下平移两个单位,以下说法错误的

9、是( )A开口方向不变B对称轴不变Cy随x的变化情况不变D与y轴的交点不变【答案】D【分析】根据二次函数的平移特点即可求解【详解】将抛物线向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变故选D【点睛】此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点8(2021·江苏苏州市·中考真题)已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )A或2BC2D【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函

10、数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减9(2021·天津中考真题)已知抛物线(是常数,)经过点,当时,与其对应的函数值有下列结论:;关于x的方程有两个不等的实数根;其中,正确结论的个数是( )A0B1C2D3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】抛物线(是常数,)经过点,当时,与其对应的函数值c=10,a-b+c= -1,4a-2b+c1,a-b= -

11、2,2a-b0,2a-a-20,a20,b=a+20,abc0,,=0,有两个不等的实数根;b=a+2,a2,c=1,a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,故选D【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键10(2021·四川遂宁市·中考真题)已知二次函数的图象如图所示,有下列5个结论:;();若方程1有四个根,则这四个根的和为2,其中正确的结论有( )A2个B3个C4个D5个【答案】A【分析】根据抛物线的开口向下,对称轴方程以及图

12、象与y轴的交点得到a,b,c的取值,于是可对进行判断;根据抛物线与x轴的交点的个数可对进行判断;根据对称轴可得,则,根据可得,代入变形可对进行判断;当时,的值最大,即当时,即>,则可对进行判断;由于方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,则利用根与系数的关系可对进行判断【详解】解:抛物线开口方向向下,a0,抛物线与y轴交于正半轴,c0,对称轴在y轴右侧,b0,abc0,错误;抛物线与x轴有两个交点>0,故错误;抛物线的对称轴为直线x=1,由图象得,当时,故正确;当时,的值最大,当时,>,(),b0,(),故正确;方程|ax2+bx+c|=1有四个

13、根,方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,所有根之和为2×(-)=2×=4,所以错误正确的结论是,故选:A【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c)抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;

14、=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点11(2021·江苏连云港市·中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y随x的增大而增大则这个函数表达式可能是( )ABCD【答案】D【分析】根据所给函数的性质逐一判断即可【详解】解:A.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而减小故选项A不符合题意;B.对于,当x=-1时,y=-1,故函数图像不经过点;函数图象分布在一、三象限;当时,y随x的增大

15、而减小故选项B不符合题意;C.对于,当x=-1时,y=1,故函数图像经过点;函数图象分布在一、二象限;当时,y随x的增大而增大故选项C不符合题意;D.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而增大故选项D符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数的性质,熟知相关函数的性质是解答此题的关键12(2021·四川乐山市·中考真题)如图,已知,与、均相切,点是线段与抛物线的交点,则的值为( )A4BCD5【答案】D【分析】在RtAOB中,由勾股定理求得;再求得直线AC的解析式为;设的半径为m,可得P(m,-

16、m+6);连接PB、PO、PC,根据求得m=1,即可得点P的坐标为(1,5);再由抛物线过点P,由此即可求得【详解】在RtAOB中,;,OC=6,C(0,6);,A(6,0);设直线AC的解析式为, ,解得,直线AC的解析式为;设的半径为m,与相切,点P的横坐标为m,点P在直线直线AC上,P(m,-m+6);连接PB、PO、PA,与、均相切,OBP边OB上的高为m,AOB边AB上的高为m,P(m,-m+6);AOP边OA上的高为-m+6,解得m=1,P(1,5);抛物线过点P,故选D【点睛】本题考查了切线的性质定理、勾股定理、待定系数法求解析式,正确求出的半径是解决问题的关键13(2021&#

17、183;四川资阳市·中考真题)已知A、B两点的坐标分别为、,线段上有一动点,过点M作x轴的平行线交抛物线于、两点若,则a的取值范围为( )ABCD【答案】C【分析】先根据题意画出函数的图象,再结合图象建立不等式组,解不等式组即可得【详解】解:由题意得:线段(除外)位于第四象限,过点且平行轴的直线在轴的下方,抛物线的顶点坐标为,此顶点位于第一象限,画出函数图象如下:结合图象可知,若,则当时,二次函数的函数值;当时,二次函数的函数值,即,解得,又,故选:C【点睛】本题考查了二次函数与一元一次不等式组,熟练掌握二次函数的图象与性质,以及图象法是解题关键14(2021·四川泸州市&

18、#183;中考真题)直线l过点(0,4)且与y轴垂直,若二次函数(其中x是自变量)的图像与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )Aa4Ba0C0a4D0a4【答案】D【分析】由直线l:y=4,化简抛物线,令,利用判别式,解出,由对称轴在y轴右侧可求即可【详解】解:直线l过点(0,4)且与y轴垂直,直线l:y=4,二次函数(其中x是自变量)的图像与直线l有两个不同的交点,又对称轴在y轴右侧,0a4故选择D【点睛】本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛

19、物线对称轴公式是解题关键15(2021·浙江中考真题)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为有下列结论:当时,;当时,;当时,;当时,其中正确结论的个数是( )A1B2C3D4【答案】A【分析】通过和的不等关系,确定,在抛物线上的相对位置,逐一分析即可求解【详解】解:抛物线与轴的交点为和,该抛物线对称轴为,当时与当时无法确定,在抛物线上的相对位置,故和都不正确;当时,比离对称轴更远,且同在x轴上方或者下方,故正确;当时,即在x轴上到2的距离比到的距离大,且都大于1,可知在x轴上到2的距离大于1,到2的距离不能确定,所以无法比较与谁离对称轴更远,故无

20、法比较面积,故错误;故选:A【点睛】本题考查二次函数的图象与性质,掌握二次函数的对称性是解题的关键16(2021·四川自贡市·中考真题)如图,直线与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线于点Q,绕点O顺时针旋转45°,边PQ扫过区域(阴影部份)面积的最大值是( )ABCD【答案】A【分析】根据题意得,设P(a,2-2a),则Q(a,3-a),利用扇形面积公式得到,利用二次函数的性质求解即可【详解】解:如图,根据旋转的性质,则,点P在直线上,点Q在直线上,且PQ轴,设P(a,2-2a),则Q(a,3-a),OP2=,OQ2=,设

21、,当时,有最大值,最大值为,的最大值为故选:A【点睛】本题考查了旋转的性质,扇形的面积公式,二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件第II卷(非选择题)请点击修改第II卷的文字说明二、填空题17(2021·四川成都市·中考真题)在平面直角坐标系中,若抛物线与x轴只有一个交点,则_【答案】1【分析】根据抛物线与x轴只有一个交点可知方程=0根的判别式=0,解方程求出k值即可得答案【详解】抛物线与x轴只有一个交点,方程=0根的判别式=0,即22-4k=0,解得:k=1,故答案为:1【点睛】本题考查二次函数与x轴的交点问题,对于二次函数(k0),当判别式0时

22、,抛物线与x轴有两个交点;当k=0时,抛物线与x轴有一个交点;当x0时,抛物线与x轴没有交点;熟练掌握相关知识是解题关键18(2021·山东泰安市·中考真题)如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:;y的最大值为3;方程有实数根其中正确的为_(将所有正确结论的序号都填入)【答案】【分析】根据二次函数的图象与性质对各项进行判断即可【详解】解:抛物线的开口向下,与y轴的交点在y轴的正半轴,a0,c0,抛物线的对称轴为直线x=1,=1,即b=2a0abc0,故错误;抛物线与x轴的一个交点坐标为(3,0),根据对称性,与x轴的另一个交点坐标为(1,0),ab

23、+c=0,故正确;根据图象,y是有最大值,但不一定是3,故错误;由得,根据图象,抛物线与直线y=1有交点,有实数根,故正确,综上,正确的为,故答案为:【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键19(2021·江苏连云港市·中考真题)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份

24、数不变,那么这两种快餐一天的总利润最多是_元【答案】1264【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点20(2021·四川南充市·中考真题)关于抛物线,给出下列结论:当时,抛物线与直线没有交点

25、;若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则其中正确结论的序号是_【答案】【分析】先联立方程组,得到,根据判别式即可得到结论;先求出a1,分两种情况:当0a1时,当a0时,进行讨论即可;求出抛物线的顶点坐标为:,进而即可求解【详解】解:联立,得,=,当时,有可能0,抛物线与直线有可能有交点,故错误;抛物线的对称轴为:直线x=,若抛物线与x轴有两个交点,则=,解得:a1,当0a1时,则1,此时,x,y随x的增大而减小,又x=0时,y=10,x=1时,y=a-10,抛物线有一

26、个交点在点(0,0)与(1,0)之间,当a0时,则0,此时,x,y随x的增大而减小,又x=0时,y=10,x=1时,y=a-10,抛物线有一个交点在点(0,0)与(1,0)之间,综上所述:若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间,故正确;抛物线的顶点坐标为:,抛物线的顶点所在直线解析式为:x+y=1,即:y=-x+1,抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),解得:,故正确故答案是:【点睛】本题主要考查二次函数的图像和性质,掌握二次函数与二次方程的联系,熟练应用判别式判断一元二次方程根的情况,是解题的关键21(202

27、1·安徽)设抛物线,其中a为实数(1)若抛物线经过点,则_;(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是_【答案】0 2 【分析】(1)直接将点代入计算即可(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值【详解】解:(1)将代入得:故答案为:0(2)根据题意可得新的函数解析式为:由抛物线顶点坐标得新抛物线顶点的纵坐标为:当a=1时,有最大值为8,所得抛物线顶点的纵坐标的最大值是故答案为:2【点睛】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法22(2021·浙江中考真题

28、)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是_【答案】2或【分析】分,和 确定点M的运动范围,结合抛物线的对称轴与,共有三个不同的交点,确定对称轴的位置即可得出结论【详解】解:由题意得:O(0,0),A(3,4)为直角三角形,则有:当时, 点M在与OA垂直的直线上运动 (不含点O);如图,当时,点M在与OA垂直的直线上运动 (不含点A);当时,点M在与OA为直径的圆上运动,圆心为点P,点P为OA的中点, 半径r= 抛物线的对称轴与x轴垂

29、直由题意得,抛物线的对称轴与,共有三个不同的交点,抛物线的对称轴为的两条切线,而点P到切线,的距离 ,又直线的解析式为:;直线的解析式为:;或4或-8故答案为:2或-8【点睛】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度运用数形结合、分类讨论是解题的关键23(2021·湖北武汉市·中考真题)如图(1),在中,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,两点运动速度的大小相等,设,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是_【答案】【分析】先根据图形可知AE+CD=AB+AC=

30、2,进而求得AB=AC=1、BC=以及图象最低点的函数值即为AE+CD的最小值;再运用勾股定理求得CD、AE,然后根据AE+CD得到+可知其表示点(x,0)到(0,-1)与(,)的距离之和,然后得当三点共线时有函数值.最后求出该直线的解析式,进而求得x的值【详解】解:由图可知,当x=0时,AE+CD=AB+AC=2AB=AC=1,BC=,图象最低点函数值即为AE+CD的最小值由题意可得:CD=,AE= AE+CD=+,即点(x,0)到(0,-1)与(,)的距离之和当这三点共线时,AE+CD最小设该直线的解析式为y=kx+b 解得当y=0时,x=故填【点睛】本题主要考查了二次函数与方程的意义,从

31、几何图形和函数图象中挖掘隐含条件成为解答本题的关键24(2021·湖北武汉市·中考真题)已知抛物线(,是常数),下列四个结论:若抛物线经过点,则;若,则方程一定有根;抛物线与轴一定有两个不同的公共点;点,在抛物线上,若,则当时,其中正确的是_(填写序号)【答案】【分析】将代入解析式即可判定;由b=c,可得a=-2c,cx2+bx+a=0可得cx2+cx-2c=0,则原方程可化为x2+x-2=0,则一定有根x=-2;当b2-4ac0时,图像与x轴少于两个公共点,只有一个关于a,b,c的方程,故存在a、b、c使b2-4ac00,故错误;若0<a<c,则有b<0

32、且|b|>|c|>|a|,|b|>2|a|,所以对称轴,因为a>0在对称轴左侧,函数单调递减,所以当x1<x2<1时,y1>y2,故正确【详解】解:抛物线经过点,即9a-3b+c=0b=2a故正确;b=c,a=-2c,cx2+bx+a=0cx2+cx-2c=0,即x2+x-2=0一定有根x=-2故正确;当b2-4ac0时,图像与x轴少于两个公共点,只有一个关于a、b、c的方程,故存在a、b、c使b2-4ac0,故错误;若0<a<c,则有b<0且|b|>|c|>|a|,|b|>2|a|,所以对称轴,因为a>0在对

33、称轴左侧,函数单调递减,所以当x1<x2<1时,y1>y2,故正确故填:【点睛】本题主要考查二次函数的图像与性质以及二元一次方程,灵活运用二次函数的图像与性质成为解答本题的关键三、解答题25(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);

34、(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润【答案】(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料单价为元,则原料单价为

35、元依题意,得解得,经检验,是原方程的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键26(2021·陕西中考真题)已知抛物线与x轴交于点A、B(其中A在点B的左侧),与y轴交于点C(1)求点B、C的坐标;(2)设点与点C关于该抛物线的对称轴对称在y轴上是否存在点P,使与相似且与是对应边?若存在,求点P的坐标;若不存在

36、,请说明理由【答案】(1),;(2)存在,或【分析】(1)令y=0,求的根即可;令x=0,求得y值即可确定点C的坐标;(2)确定抛物线的对称轴为x=1,确定的坐标为(2,8),计算C=2,利用直角相等,两边对应成比例及其夹角相等的两个三角形相似,分类求解即可.【详解】解:(1)令,则,令,则(2)存在由已知得,该抛物线的对称轴为直线点与点关于直线对称,点P在y轴上,当时,设,i)当时,则,ii)当时,则,iii)当时,则,与矛盾点P不存在或【点睛】本题考查了二次函数与一元二次方程的关系,对称轴的意义,三角形相似的判定和性质,熟练掌握二次函数的性质,灵活运用三角形的相似和进行一元二次方程根的求解

37、是解题的关键27(2021·四川乐山市·中考真题)已知关于的一元二次方程(1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解【答案】(1);(2),【分析】(1)根据0时,一元二次方程有两个不相等的实数根求解m的取值范围即可;(2)根据二次函数图象与x轴的交点的横坐标就是当y=0时对应一元二次函数的解,故将x=1代入方程中求出m值,再代入一元二次方程中解方程即可求解【详解】解:(1)由题知,(2)由图知的一个根为1,即一元二次方程为,解得,一元二次方程的解为,【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次

38、方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键28(2021·浙江丽水市·中考真题)如图,已知抛物线经过点(1)求的值;(2)连结,交抛物线L的对称轴于点M求点M的坐标;将抛物线L向左平移个单位得到抛物线过点M作轴,交抛物线于点NP是抛物线上一点,横坐标为,过点P作轴,交抛物线L于点E,点E在抛物线L对称轴的右侧若,求m的值【答案】(1);(2);1或【分析】(1)直接运用待定系数法求解即可;(2)求出直线AB的解析式,抛物线的对称轴方程,代入求解即可;根据抛物线的平移方式求出抛物线的表达式,再分三种情况进行求解即可【详解】解:

39、(1)把点的坐标分别代入,得解得的值分别为(2)设所在直线的函数表达式为,把的坐标分别代入表达式,得解得所在直线的函数表达式为由(1)得,抛物线L的对称轴是直线,当时,点M的坐标是设抛物线的表达式是,轴,点N的坐标是点P的横坐标为点P的坐标是,设交抛物线于另一点Q,抛物线的对称轴是直线轴,根据抛物线的轴对称性,点Q的坐标是(i)如图1,当点N在点M下方,即时,由平移性质得,解得(舍去),(ii)图2,当点N在点M上方,点Q在点P右侧,即时,解得(舍去),(舍去)()如图3,当点N在点M上方,点Q在点P左侧,即时,解得(舍去),综上所述,m的值是1或【点睛】本题属于二次函数综合题,考查了待定系数

40、法求函数的解析式、抛物线的平移规律和一元二次方程等知识点,数形结合、熟练掌握相关性质是解题的关键29(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元说明:汽车数量为整数;月利润=月租车费-月维护费;两公司月利润差=月利润较高公司的利润-月利润较低

41、公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围【答案】(1)48000,37;(2)33150元;(3)【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,

42、根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围【详解】解:(1)=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:,解得:x=37或x=-1(舍),当每个公司租出的汽车为37辆时,两公司的月利

43、润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=,y乙=,当甲公司的利润大于乙公司时,0x37,y=y甲-y乙=,当x=18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37x50,y=y乙-y甲=,对称轴为直线x=18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为=,对称轴为直线x=,x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,解得:【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤

44、其(3)中要根据x为整数得到a的不等式30(2021·江苏扬州市·中考真题)如图,在平面直角坐标系中,二次函数的图像与x轴交于点、,与y轴交于点C(1)_,_;(2)若点D在该二次函数的图像上,且,求点D的坐标;(3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标【答案】(1)-2,-3;(2)(,6)或(,6);(3)(4,5)【分析】(1)利用待定系数法求解即可;(2)先求出ABC的面积,设点D(m,),再根据,得到方程求出m值,即可求出点D的坐标;(3)分点P在点A左侧和点P在点A右侧,结合平行线之间的距离,分别求解【详解】解:(1)点A和点B在二

45、次函数图像上,则,解得:,故答案为:-2,-3;(2)连接BC,由题意可得:A(-1,0),B(3,0),C(0,-3),SABC=6,SABD=2SABC,设点D(m,),即,解得:x=或,代入,可得:y值都为6,D(,6)或(,6);(3)设P(n,),点P在抛物线位于x轴上方的部分,n-1或n3,当点P在点A左侧时,即n-1,可知点C到AP的距离小于点B到AP的距离,不成立;当点P在点B右侧时,即n3,APC和APB都以AP为底,若要面积相等,则点B和点C到AP的距离相等,即BCAP,设直线BC的解析式为y=kx+p,则,解得:,则设直线AP的解析式为y=x+q,将点A(-1,0)代入,

46、则-1+q=0,解得:q=1,则直线AP的解析式为y=x+1,将P(n,)代入,即,解得:n=4或n=-1(舍),点P的坐标为(4,5)【点睛】本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的难点在于将同底的三角形面积转化为点到直线的距离31(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线(1)求a的值(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式【答案】(1);(2)【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;(2)由(

47、1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则 从而可得平移方式及平移后的解析式【详解】解:(1)图象的对称轴为直线,(2),二次函数的表达式为,抛物线向下平移3个单位后经过原点,平移后图象所对应的二次函数的表达式为【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数图像的平移,熟练掌握二次函数的基础知识是解题的关键32(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,

48、水柱所在抛物线第一象限部分的函数表达式为(1)求雕塑高OA(2)求落水点C,D之间的距离(3)若需要在OD上的点E处竖立雕塑EF,问:顶部F是否会碰到水柱?请通过计算说明【答案】(1);(2)22米;(3)不会【分析】(1)求雕塑高,直接令,代入求解可得;(2)可先求出的距离,再根据对称性求的长;(3)利用,计算出的函数值,再与的长进行比较可得结论【详解】解:(1)由题意得,A点在图象上当时,(2)由题意得,D点在图象上令,得解得:(不合题意,舍去)(3)当时,不会碰到水柱【点睛】本题考查了二次函数的图像与性质及图像关于轴对称问题,解题的关键是:掌握二次函数的图像与性质33(2021·

49、;浙江温州市·中考真题)已知抛物线经过点(1)求抛物线的函数表达式和顶点坐标(2)直线交抛物线于点,为正数若点在抛物线上且在直线下方(不与点,重合),分别求出点横坐标与纵坐标的取值范围,【答案】(1),顶点坐标为;(2),【分析】(1)把代入可求得函数解析式,然后利用配方法将二次函数解析式转化为顶点式,直接得到抛物线的顶点坐标;(2)把,代入可求出m,n,求出点横坐标取值范围,在利用二次函数的最值即可求纵坐标的取值范围【详解】解:(1)把代入,得,解得,抛物线的函数表达式为,配方得,顶点坐标为(2)当时,当时,解得,为正数,点在抛物线上且在直线的下方(不与点,重合),0开口向上,当x

50、=1时函数取得最小值=-9当时,随的增大而减小;当时,随的增大而增大,当x=-4时,y=16,当x=5时y=7,【点睛】本题二次函数综合题,考查了利用待定系数法求二次函数解析式,配方法把二次函数一般式化成顶点式,以及二次函数的性质34(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式(3)超市一天购

51、进苹果数量不超过300千克,且购进苹果当天全部销售完据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)【答案】(1)苹果的进价为10元/千克;(2);(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克【分析】(1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;(2)分两种情况:当x100时, 当x100时,分别列出函数解析式,即可;(3)分两种情况:若x100时,若x100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解【详解】解:(1)设苹果的

52、进价为x元/千克,由题意得:,解得:x=10,经检验:x=10是方程的解,且符合题意,答:苹果的进价为10元/千克;(2)当x100时,y=10x,当x100时,y=10×100+(10-2)×(x-100)=8x+200,;(3)若x100时,w=zx-y=,当x=100时,w最大=100,若x100时,w=zx-y=,当x=200时,w最大=600,综上所述:当x=200时,超市销售苹果利润w最大,答:要使超市销售苹果利润w最大,一天购进苹果数量为200千克【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键35(2021·浙江嘉兴市·中考真题)已知二次函数(1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论