《有理数》全章复习与巩固(提高)知识讲解_第1页
《有理数》全章复习与巩固(提高)知识讲解_第2页
《有理数》全章复习与巩固(提高)知识讲解_第3页
《有理数》全章复习与巩固(提高)知识讲解_第4页
《有理数》全章复习与巩固(提高)知识讲解_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.有理数全章复习与巩固(提高) 撰稿:孙景艳 审稿:赵炜 【学习目标】 1理解正负数的意义,掌握有理数的概念.2理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法,有效数字及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念 1.有理数的分类: (1)按定义分类: (2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用

2、0表示表示某种状态 表示冰点表示正数与负数的界点0非正非负,是一个中性数2数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3相反数:只有符号不同的两个数互称为相反数,0的相反数是0. 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4绝对值:(1)

3、代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作. (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算 1法则(1)加法法则:同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b)(3)乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a&#

4、247;b=a·(b0)(5)乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非零次幂都是0,(6)有理数的混合运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“”号的个数,例如:(3)=3,+(3)=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(3)×(2)×(6)=36,而(3)×(2)×6=36.(

5、3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如:, .2运算律 :(1)交换律: 加法交换律:a+b=b+a; 乘法交换律:ab=ba;(2)结合律: 加法结合律: (a+b)+c=a+(b+c); 乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法(4)作商比较法;(5)倒数比较法要点四、科学记数法 1. 科学记数法:把一个大于10的数表示成的形式(其

6、中,是正整数),此种记法叫做科学记数法.例如:200 000=.2.有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字. 如:0.000 27有两个有效数字:2,7.注意:万=,亿=10【典型例题】类型一、有理数相关概念1 已知x与y互为相反数,m与n互为倒数,|x+y |+(a-1)20,求a2-(x+y+mn)a+(x+y)2009+(-mn)2010的值【思路点拨】(1)若有理数x与y互为相反数,则x+y0,反过来也成立 (2)若有理数m与n互为倒数,则mn1,反过来也成立【答案与解析】因为x与y互为相反数,m与n互为倒数,(a-1)20, 所以x+y0

7、,mn1,a1, 所以a2-(x+y+mn)a+(x+y)2009+(-mn)2010 a2-(0+1)a+02009+(-1)2010 a2-a+1 a1,原式12-1+11【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题(1)已知四种说法: |a|=a时,a>0; |a|=-a时, a<0. |a|就是a与-a中较大的数. |a|就是数轴上a到原点的距离. 对于任意有理数,-|a|a|a|. 其中说法正确的个数是( ) A1 B2 C3 D4 (2)有四个说法: 有最小的有理数 有绝对值

8、最小的有理数 有最小的正有理数 没有最大的负有理数 上述说法正确的是( ) A B C D (3)已知(-ab)3>0,则( ) Aab<0 Bab>0 Ca>0且b<0 Da<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A120 B-15 C0 D-120 (5)下列各对算式中,结果相等的是( ) A-a6与(-a)6 B-a3与|-a|3 C(-a)23与(-a3)2 D(ab)3与ab3 【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】某市2008年的国民生产总值约为

9、333.9亿元,预计2009年比上一年增长10%,表示2009年这个市的国民生产总值应是(结果保留3个有效数字)_元.【答案】. 提示:(亿元)(元)2. 在下列两数之间填上适当的不等号: _ 【思路点拨】在a、b均为正数的条件下,根据“,分别得到ab,ab,ab”来比较两数的大小【答案】 【解析】法一:作差法:()=,. 法二:作商法:由于,所以 再根据两个负数,绝对值大的反而小,得到:【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三:【变式】在下列两数之间填上适当的不等号 _ 【答案】 (提示:倒数法较简便)类型二、有理数的运算【高清课堂:有理数专题复习 357133

10、 有理数的混合运算】3 (1) (2) (4)(5)【答案与解析】(1)原式(2)原式(3)原式(4)原式(5)【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)ab+ac;逆向应用分配律:ab+aca(b+c)等.举一反三:【变式】(1)(2)【答案】(1) (2) 4. 先观察下列各式:;,根据以上观察,计算:的值【答案与解析】原式 【总结升华】根据题中提供的拆项方法把每一项拆成的形式,然后再进行计算举一反三:【高清课堂:有理数的复习与提高 例2】【变式】用简单方法计算:【答案】原式=

11、类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a、b在数轴上对应点的位置如图所示,且|a|b|,求|a|-|a+b|-|b-a|的值 A2b+a B2b-a Ca Db (2)分类讨论思想:已知a是任一有理数,试比较|a|与-2a的大小(3)转化思想:【答案与解析】(1)从数轴上a、b两点的位置可以看出a0,b0,且|a|b|,所以|a|-|a+b|-|b-a|-a+a+b-b+aa(2)a可能是正数,0或负数,这就需要分类讨论:当a0时,|a|a0,-2a0,所以|a|-2a;当a0时,|a|0,-2a0,所以|a|-2a;当a0时,|a|-a>0,-2a0,又-a-

12、2a,所以|a|-2a综上所述:当a0时, |a|-2a;当a0时,|a|-2a(3)【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”. 类型四、规律探索 6. (安徽)下面两个多位数1248624,6248624都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位对第2位数字再进行如上操作得到第3位数字,后面的每一位数字都是由前一位数字进行如上操作得到的当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A495 B497 C501 D503【思路点拨】多位数1248624是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推根据此方法可得到第一位是3的多位数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论