版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Quantum Neural NetworksIntroduction & Applications虞台文ContentlIntroductionlThe Qtron NN ModellSolving Problems Using Qtron NNslApplicationslDetail of Visual CryptographylConclusionsQuantum Neural NetworksIntroduction & ApplicationsIntroduction想當年,也曾意氣風發Life from the cradle to the gravelPastl八
2、字、運勢lNothing can be done? lPresentl創造佳績lHow?lFuturel卡奴l邁向顛峰趨吉避凶往事只堪成追憶Life from the cradle to the gravelPastl八字、運勢lNothing can be done? lPresentl創造愉快生活lHow?lFuturel卡奴l邁向顛峰趨吉避凶往事只堪成追憶Life from the cradle to the gravelPastl八字、運勢lNothing can be done? lPresentl創造愉快生活lHow?lFuturel卡奴l邁向顛峰趨吉避凶往事只堪成追憶?Life
3、from the cradle to the gravelPastl八字、運勢lNothing can be done? lPresentl創造愉快生活lHow?lFuturel卡奴l邁向顛峰往事只堪成追憶趨吉避凶繼往開來Exploitation + ExplorationThe PhysicsGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumGoal:PastGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOpti
4、mum(八字、運勢)Goal:PresentGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimum(八字、運勢)Goal:PresentGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimum趨吉避凶renders us to be stuck at a local optimum.Goal:PresentGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalO
5、ptimumLocalOptimum趨吉避凶Exploitation + Explorationrenders us to be stuck at a local optimum.Goal:PresentGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimum趨吉避凶Goal:Exploitation + ExplorationPastPresentFutureGlobalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimumLocalOptimum
6、Goal:Exploitation + ExplorationSolving Problems by Physics為天地立心為生民立命為往聖繼絕學為萬世開太平Exploitation + ExplorationNewtons LawUncertaintyPrincipleEnergy goes low always.We live in a probability world.Solving Problems by Physics為天地立心為生民立命為往聖繼絕學為萬世開太平Exploitation + ExplorationNewtons LawUncertaintyPrincipleEne
7、rgy goes low always.We live in a probability world.見山有時不是山見水有時不是水可邁向顛峰也 見山是山 見水是水可趨吉避凶也How?天將降大任於斯人也,必先苦其心志,勞其筋骨, 餓其體膚,空乏其身行,行拂亂其所為,所以動心忍性,曾益其所不能。 Quantum Neural NetworksIntroduction & ApplicationsThe Qtron NN ModelThe Qtroni(ai ). . .0 1 2qi1aiQiActive valueQi0, 1, , qi1IiRExternal Stimulus()ij
8、jjjT a QInternal StimulusNiNoiseQuantum NeuronThe Qtroni(ai ). . .0 1 2qi1aiQiActive valueQi0, 1, , qi1IiRExternal Stimulus()ijjjjT a QInternal StimulusNiNoiseFree-Mode QtronThe Qtroni(ai ). . .0 1 2qi1aiQiActive valueQi0, 1, , qi1IiRExternal Stimulus()ijjjjT a QInternal StimulusNiNoiseClamp-Mode Qt
9、ronInput StimulusInternalStimulusExternalStimulusNoiseNoiseFreeTermi(ai ). . .NoiseLevel TransitionRunning Asynchronouslyi(ai ). . .Energy FunctionInteractionAmong QtronsInteractionwithExternal StimuliConstantMonotonically NonincreasingMonotonically Nonincreasing趨吉避凶The Qtron NNInterface/Hidden Qtro
10、ns clamp-modefree-modefree mode Hidden Qtrons Interface QtronsPersistent Noise-Injection Mechanism clamp-modefree-modefree mode Hidden Qtrons Interface QtronsNoises dont have holiday.Question-AnsweringFeed a question by clamping some interface Qtrons. clamp-modefree-modefree mode Hidden Qtrons Inter
11、face QtronsQuestion-AnsweringGet the answer when the NN settles down. clamp-modefree-modefree mode Hidden Qtrons Interface QtronsBounded Noise Spectrai(ai ). . .NiNoise,iiiNNNMostNegativeMostPositiveiNiN0The noise strength for simulated annealing is possibly unbounded unless the temperature reaches
12、zero.Know-Energy Systems 知能Know-Energy Systems 知能Never occurFeatureA Qtron NN can settle down iff its energy is almost lost.The solution reported by the Qtron NN must be very good.Quantum Neural NetworksIntroduction & ApplicationsSolving Problems Using Qtron NNsExample: Adder1 25 + 7=5 + 7=1 25
13、+ 7=1 25 + 7=1 2 How do you solve these problems? How about this?3 5Example: Adder1 25 + 7=5 + 7=1 25 + 7=1 25 + 7=1 2 How do you solve these problems? How about this?3 5I bet that you solve the problem by energy minimization.It appears as a memory association process of human being.Associative Memo
14、riesProvide the known information to get the unknown information.The Associative Adder543654+XY+Z1719The Associative Adder5 4 36 5 4+171 95 4 36 5 4+171 95 4 36 5 4+171 95 4 36 5 4+171 95 4 36 5 4+171 95 4 36 5 4+171 9The Associative Adder5 4 36 5 4+171 95 4 36 5 4+171 95 4 36 5 4+171 91 4 36 5 4+07
15、7 95 4 36 5 4+171 91 2 39 8 8+111 1Qtron NN Implementation 3-Digit Associative Adder 2XQ1XQ0XQ2YQ1YQ0YQ2ZQ1ZQ0ZQ3ZQ+addend1addend2sumXYZ*0,1,9iQ Qtron NN Implementation 3-Digit Associative Adder 2XQ1XQ0XQ2YQ1YQ0YQ2ZQ1ZQ0ZQ3ZQ+100101102103 Weights of digits 2010iXiiXQ2010jYijYQ3010kZikZQQtron NN Impl
16、ementation 3-Digit Associative Adder 2XQ1XQ0XQ2YQ1YQ0YQ2ZQ1ZQ0ZQ3ZQ+2010iXiiXQ2010jYijYQ200202110010iXjYiiijkZikQQQGoal:XYZ3010kZikZQQtron NN Implementation 3-Digit Associative Adder 200202110010iXjYiiijkZikQQQGoal:220022011101020iXjYadderiikZikijQQQEMinimizeQtron NN Implementation 3-Digit Associati
17、ve Adder 220022011101020iXjYadderiikZikijQQQEMinimize0The energy value of a solution state.“知能Quantum Neural NetworksIntroduction & ApplicationsApplicationsDemonstrationslN-Queen SolverlSudoku (數獨)lVisual CryptographyThe N-Queen SolverA bench mark of constraint satisfaction problem.The N-Queen S
18、olver01000000000001001000000000000010000100000000000100100000000010000,1ijQ Facts0100000000000100100000000000001000010000000000010010000000001000lEach row and column sum to one.lEach diagonal sums to zero or one.SkipMath0,1ijQ N-Queen as an Integer Programfor rowsfor columnsfor diagonals for diagona
19、ls /lEach row and column sum to one.lEach diagonal sums to zero or one.constraintN-Queen as an Integer Programfor rowsfor columnsfor diagonals for diagonals /lEach row and column sum to one.lEach diagonal sums to zero or one.constraintTo build a known-energy system, inequalities have to be converted
20、 to equalities.N-Queen as an Integer Programfor rowsfor columnsfor diagonals for diagonals /lEach row and column sum to one.lEach diagonal sums to zero or one.constraintSlack variables added.They serve as hidden QtronsEnergy Functionfor the N-Queen SolverKnow-Energy Propertyfor the N-Queen Solvermus
21、t be zeromust be zeromust be zeromust be zeroMust be zeroKnow-Energy Propertyfor the N-Queen Solvermust be zeromust be zeromust be zeromust be zeroMust be zeroSee the paper for the details.The Operating Scenariofor the N-Queen SolverThe Operating Scenariofor the N-Queen SolverThe Operating Scenariof
22、or the N-Queen SolverLocal-Minimafor the N-Queen SolverThey are local-minima, and all are infeasible.SudokuSudokuA reasonable puzzle must have a unique solution.ProblemslHow to resolve a puzzle?lHow to generate a puzzle?lEnsure uniquenesslHow to control the level of difficulty?Qtron NN provides a to
23、tal solution. Visual Cryptography志明:妳甘有影是春嬌志明:妳甘有影是春嬌?志明:妳甘有影是春嬌志明:妳甘有影是春嬌?志明:妳甘有影是春嬌志明:妳甘有影是春嬌?志明:妳甘有影是春嬌志明:妳甘有影是春嬌?What is Visual Cryptography?lVisual Cryptography (VC)lEncrypts secrete into a set of images (shares).lDecrypts secrete using eyes.lApplications:lIdentificationlAuthorizationlSemipubli
24、c EncryptionlKey ManagementlEntertainment . . .Share 2Share 1Secrete ImageWhat is Visual Cryptography?lVisual Cryptography (VC)lEncrypts secrete into a set of images (shares).lDecrypts secrete using eyes.lApplications:lIdentificationlAuthorizationlSemipublic EncryptionlKey ManagementlEntertainment .
25、 . .Example: (2, 2)Target imageShare image2Share image1Plane shares are usedTraditional ApproacheslNaor and Shamir (2,2)PixelProbabilityShares#1 #2Superposition ofthe two shares5 . 0p5 . 0p5 . 0p5 . 0pWhitePixelsBlackPixelsThe Code BookTraditional ApproacheslNaor and Shamir (2,2)PixelProbabilityShar
26、es#1 #2Superposition ofthe two shares5 . 0p5 . 0p5 . 0p5 . 0pWhitePixelsBlackPixelsThe Code BookComplex Access SchemesQtron NN ApproachThe VA Schemekeyshareuser shares(resource 2)user shares(resource 1)stackingstackingVIPIPPVIPIPPVery Important Person.Key ShareUser ShareUser ShareUser ShareVIPIPPDem
27、oThe SE SchemeThe database of AIMM labUser KeyJanetABJennyCDHsunliXYBillUVpublic share(database of AIMM lab)ABCDXYUVstackingusershareskeysJanetThe SE SchemeJennyHsunliBillstackingJanetJennyHsunliBillExperimental Resultpublic share(database of AIMM lab)usershareskeysFull Access Scheme 3 Shares朝朝 辭辭 白
28、白帝帝彩彩雲雲間間SharesFull Access Scheme 3 Shares朝朝 辭辭 白白帝帝彩彩雲雲間間SharesTheoretically, unrealizable.Theoretically, unrealizable.We did it in practical sense. We did it in practical sense. Full Access Scheme 3 SharesS1S2S3S1+S2S1+S3S2+S3S1+S2+S3Access Schemewith Forbidden Subset(s)Anyone knows what it is?Acc
29、ess Schemewith Forbidden Subset(s)人人 之之 初初性性本本X善善Theoretically, realizable.Theoretically, realizable.SharesAccess Schemewith Forbidden Subset(s)S1S2S3S1+S2S1+S3S2+S3S1+S2+S3Quantum Neural NetworksIntroduction & ApplicationsDetail ofVisual CryptographySkipEnergy Function for VCVisual Cryptography
30、Image HalftoningImage Stacking+Image HalftoningGraytone ImageHalftoning0255Halftone Image0 (Transparent)1Graytone image halftone image can be formulated as to minimize the energy function of a Qtron NN.Image HalftoningGraytone ImageHalftoning0255Halftone Image0 (Transparent)1Graytone image halftone
31、image can be formulated as to minimize the energy function of a Qtron NN.In ideal case, each pair of corresponding small areas has the same average graylevel. The Qtron NN for Image HalftoningPlane-G (Graytone image)Plane-H (Halftone image)Image HalftoningHalftoningClamp-modeFree-modePlane-G (Grayto
32、ne image)Plane-H (Halftone image)QuestionAnswerImage RestorationPlane-G (Graytone image)Plane-H (Halftone image)RestorationClamp-modeFree-modeQuestionAnswerStacking Rule+The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Qtron NN.Stacking Rule+The satisf
33、action of stacking rule can also be formulated as to minimize the energy function of a Qtron NN.+=s1s2hStacking Rule+The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Qtron NN.The energy function for the stacking rule.See the paper for the detail. The T
34、otal Energy+Share 1TargetShare 1Share 2TargetShare 2TotalEnergyImage HalftoningStacking RuleThe Qtron NN for VC/VAPlane-GS1Plane-HS1Public SharePlane-HS2Plane-GS2User SharePlane-GTPlane-HTKeyclampclampclampCD XY UVApplication Visual CryptographyPlane-GS1Plane-HS1Share 1Plane-HS2Plane-GS2Share 2Plane
35、-GTPlane-HTTargetClamp-ModeClamp-ModeClamp-ModeFree-ModeFree-ModeFree-ModeApplication Visual CryptographyPlane-GS1Plane-HS1Share 1Plane-HS2Plane-GS2Share 2Plane-GTPlane-HTTargetClamp-ModeClamp-ModeClamp-ModeFree-ModeFree-ModeFree-ModeApplication Visual AuthorizationPlane-GS1Plane-HS1User ShareAuthorityAuthorityPlane-HS2Plane-GS2Plane-GTPlane-HTKey ShareKey ShareUser ShareVIPIPPApplication Visual A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绵阳市事业单位公开选调工作人员25人备考题库有答案详解
- 5G+急诊急救的响应时效优化策略
- 2025年库尔勒公共停车场服务管理有限公司招聘备考题库及1套完整答案详解
- 3D打印技术在功能区脑肿瘤手术规划中的创新
- 2025年浙江省经济建设投资有限公司招聘5人备考题库及答案详解参考
- 2025年长江财产保险股份有限公司总精算师及相关部门负责人招聘备考题库及一套参考答案详解
- 新疆医科大学2025年高层次人才引进备考题库及1套参考答案详解
- 2025年成都市双流区东升第一初级中学招聘教师备考题库及参考答案详解一套
- 2025年黄山太平经济开发区投资有限公司公开招聘高管人员备考题库附答案详解
- 2025年苏州交投新基建科技有限公司公开招聘12名人员备考题库及一套参考答案详解
- 社会能力训练教程
- 广东省广州市番禺区2024-2025学年七年级上学期语文期末考试试卷(含答案)
- 2025年河南高二政治题库及答案
- 创新激励机制
- 产品成熟度评估标准文档
- 2025年浙江衢州龙游经济开发区下属国资公司公开招聘普通岗位合同制员工11人笔试考试参考题库附答案解析
- 城市给水管线工程初步设计
- 考研咨询师员工培训方案
- 人工智能+跨学科人才培养模式创新分析报告
- 职业教育专业布局体系清单
- 地震面试题库及答案解析
评论
0/150
提交评论