版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一部分专题强化突破专题强化突破专题五立体几何专题五立体几何第二讲第二讲点、直线、平面之间的位置关系点、直线、平面之间的位置关系1 1高 考 考 点 聚 焦高 考 考 点 聚 焦2 2核 心 知 识 整 合核 心 知 识 整 合3 3高 考 真 题 体 验高 考 真 题 体 验4 4命 题 热 点 突 破命 题 热 点 突 破5 5课 后 强 化 训 练课 后 强 化 训 练高考考点聚焦高考考点聚焦高考考点考点解读与空间位置关系有关的命题真假的判断1.多以命题的形式出现,判断命题的真假2考查空间几何体中点、线、面的位置关系证明平行关系1.以多面体为命题背景,证明线线平行、线面平行、面面平行2以
2、三视图的形式给出几何体,判断或证明平行关系,考查平行的判定及性质证明垂直关系1.以多面体为命题背景,证明线线垂直、线面垂直、面面垂直2考查垂直关系的判定定理与性质定理 备考策略 本部分内容在备考时应注意以下几个方面: (1)加强对空间几何体概念及位置关系的理解、掌握三个公理以及它们的推论 (2)掌握各种判定定理、性质定理的条件与结论,并且会应用 (3)掌握利用线线平行、线面平行、面面平行之间的转化关系;掌握线线垂直、线面垂直、面面垂直之间的转化关系 预测2018年命题热点为: (1)空间几何体中各种垂直、平行关系的证明 (2)已知空间几何体中的命题,判断其真假核心知识整合核心知识整合 1线面平
3、行与垂直的判定与性质a,a,b,ab a,bab 2面面平行与垂直的判定与性质a,b,abP,a,b a,a, ,b,a,bab 3三种平行关系的转化 4三种垂直关系的转化 1忽略判定定理和性质定理中的条件 应用线面平行判定定理时,忽略“直线在平面外”“直线在平面内”的条件;应用线面垂直及面面平行的判定定理时,忽略“两直线相交”“两直线在平面内”的条件,应用面面垂直的性质定理时忽略“直线在平面内”“直线垂直于两平面的交线”的条件等 2把平面几何中的相关结论推广到空间直接利用 如平面内垂直于同一条直线的两条直线相互平行,这个结论在空间中不成立 3不能准确掌握判定定理和性质定理 如线面平行的性质定
4、理中是过与平面平行的直线的平面与该平面的交线与已知直线平行,而非作出的直线;面面平行的性质定理中平行的两条直线一定是第三个平面与两平行平面的交线等高考真题体验高考真题体验A 解析A项,作如图所示的辅助线,其中D为BC的中点,则QDAB QD平面MNQQ, QD与平面MNQ相交, 直线AB与平面MNQ相交 B项,作如图所示的辅助线,则ABCD,CDMQ, ABMQ 又AB 平面MNQ,MQ平面MNQ,AB平面MNQ C项,作如图所示的辅助线,则ABCD,CDMQ, ABMQ 又AB 平面MNQ,MQ平面MNQ,AB平面MNQ D项,作如图所示的辅助线,则ABCD,CDNQ, ABNQ 又AB 平
5、面MNQ,NQ平面MNQ,AB平面MNQ 故选AC 解析解法一:如图,A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直, B,D错; A1E在平面BCC1B1上的投影为B1C,且B1CBC1, A1EBC1,故C正确; (证明:由条件易知,BC1B1C,BC1CE,又CEB1CC,BC1平面CEA1B1 又A1E平面CEA1B1, A1EBC1) A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错 故选CC 解析由题意知,l,所以l,因为n, 所以nl.故选CD 解析对于选项D,当直线m位于平面内且与平面,的交线平行时,直线m,显然m与平面不垂直,因此选项D不
6、正确 解析(1)证明:取B1D1的中点O1,连接CO1,A1O1, 由于ABCDA1B1C1D1是四棱柱, 所以A1O1OC,A1O1OC, 因此四边形A1OCO1为平行四边形,所以A1OO1C, 又O1C平面B1CD1,A1O 平面B1CD1, 所以A1O平面B1CD1 (2)证明:因为ACBD,E,M分别为AD和OD的中点, 所以EMBD 又A1E平面ABCD,BD平面ABCD, 所以A1EBD, 因为B1D1BD, 所以EMB1D1,A1EB1D1 又A1E,EM平面A1EM,A1EEME, 所以B1D1平面A1EM 又B1D1平面B1CD1, 所以平面A1EM平面B1CD1命题热点突破
7、命题热点突破命题方向1线面位置关系的命题真假判断 B 解析对于选项A,若m,n,则m,n相交或平行或异面,故A错;对于选项B,若m,n,则mn,故B正确;对于选项C,若m,mn,则n或n,故C错;对于选项D,若m,mn,则n或n或n,故D错C 规律总结 判断与空间位置关系有关的命题真假的两大方法 (1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断 (2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定,进行肯定或否定D 解析由,l得l,又m,lm,正确;由,l得l或l,故不能得到lm,错误;由l,lm得m,又m,正确;由lm,l得m
8、或m,故m,不相交,正确故选D 命题方向2空间平行关系的证明 解析(1)因为ASAB,AFSB,垂足为F,所以F是SB的中点又因为E是SA的中点,所以EFAB 因为EF 平面ABC,AB平面ABC, 所以EF平面ABC 同理EG平面ABC 又EFEGE, 所以平面EFG平面ABC (2)因为平面SAB平面SBC,且交线为SB,又AF平面SAB,AFSB,所以AF平面SBC 因为BC平面SBC,所以AFBC 又因为ABBC,AFABA,AF,AB平面SAB, 所以BC平面SAB 因为SA平面SAB, 所以BCSA 规律总结 立体几何中证明平行关系的常用方法 (1)证明线线平行的常用方法 利用平行
9、公,即证明两直线同时和第三条直线平行 利用平行四边形进行转换 利用三角形中位线定理证明 利用线面平行、面面平行的性质定理证明 (2)证明线面平行的常用方法 利用线面平行的判定定,把证明线面平行转化为证明线线平行 利用面面平行的性质定,把证明线面平行转化为证明面面平行 (3)证明面面平行的方法 证明面面平行,依据判定定,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行命题方向3空间垂直关系的证明 解析(1)证法一:连接DG,CD,设CDGFM,连接MH.在三棱台DEFABC中,AB2DE,G为AC的中点,可得DFGC,DFGC, 所以四
10、边形DFCG为平行四边形, 则M为CD的中点,又H为BC的中点, 所以HMBD 又HM平面FGH,BD 平面FGH, 所以BD平面FGH 证法二:在三棱台DEFABC中, 由BC2EF,H为BC的中点, 可得BHEF,BHEF, 所以四边形HBEF为平行四边形, 可得BEHF 在ABC中,G为AC的中点,H为BC的中点, 所以GHAB 又GHHFH,所以平面FGH平面ABED 因为BD平面ABED, 所以BD平面FGH (2)连接HE,GE 因为G,H分别为AC,BC的中点,所以GHAB, 由ABBC,得GHBC 又H为BC的中点, 所以EFHC,EFHC, 因此四边形EFCH是平行四边形,
11、所以CFHE 又CFBC,所以HEBC 又HE,GH平面EGH,HEGHH, 所以BC平面EGH 又BC平面BCD,所以平面BCD平面EGH 规律总结 立体几何中证明垂直关系的常用方法 (1)证明线线垂直的常用方法 利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直 利用勾股定理逆定理 利用线面垂直的性质, 即要证明线线垂直,只需证明一线垂直于另一线所在平面即可 (2)证明线面垂直的常用方法 利用线面垂直的判定定,把线面垂直的判定转化为证明线线垂直 利用面面垂直的性质定,把证明线面垂直转化为证明面面垂直 利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂
12、直于这个平面等 (3)证明面面垂直的方法 证明面面垂直常用面面垂直的判定定,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决 解析(1)因为D,E是中点, 所以DEAC,又ACA1C1,所以DEA1C1, 又因为A1C1平面A1C1F,且DE 平面A1C1F, 所以DE平面A1C1F (2)因为ABCA1B1C1是直三棱柱, 所以AA1平面A1B1C1, 所以AA1A1C1 又因为A1C1A1B1,且AA1A1B1A1, AA1,A1B1平面AA1B1B, 所以A1C1平面AA1B1B, 所以A
13、1C1B1D, 又A1FB1D,A1FA1C1A1, 所以B1D平面A1C1F, 又因为B1D平面B1DE, 所以平面B1DE平面A1C1F命题方向4立体几何中的折叠问题、探索性问题 解析(1)因为在矩形ABCD中,AB8,BC4,E为DC的中点, 所以在折起的过程中,D点在平面BCE上的投影如图 因为DE与AC所成角不能为直角, 所以DE不会垂直于平面ACD,故错误; 只有D点投影位于O2位置时,即平面AED与平面AEB重合时,才有BECD,此时CD不垂直于平面AEBC,故CD与平面BED不垂直,故错误; BD与AC所成角不能成直角, 所以BD不能垂直于平面ACD,故错误; 因为ADED,并
14、且在折起过程中, 存在一个位置使ADBE,且DEBEE, 所以在折起过程中存在AD平面BED的位置,故正确 规律总结 1求解平面图形折叠问题的关键和方法 (1)关键:分清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口 (2)方法:把平面图形翻折后,经过恰当连线就能得到三棱锥,四棱锥等几何体,从而把问题转化到我们熟悉的几何中解决 (2)探索性问题求解的途径和方法 (1)对命题条件探索的三种途径: 先猜后证,即先观察,尝试给出条件再证明; 先通过命题成立的必要条件探索出命题成立的条件,再证明充分性; 将几何问题转化为代数问题,探索出命题成立的条件 (2)对命题结论的探索方法: 从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,现寻找与条件相容或者矛盾的结论 解析(1)由已知,M为BC中点,且ABAC,所以AMBC 又因为BB1AA1,且AA1底面ABC, 所以BB1底面ABC 因为AM底面ABC,所以BB1AM, 又BB1BCB, 所以AM平面BB1C1C 又因为AM平面APM, 所以平面APM平面BB1C1C (2)取C1B1中点D,连接A1D,DN,DM,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度物流服务合同标的与服务内容2篇
- 2025年度航空航天零部件采购合同模板3篇
- 2025彩妆造型行业消费者权益保护合作协议3篇
- 泰州职业技术学院《城市更新与方法》2023-2024学年第一学期期末试卷
- 2024版:变压器买卖双方权益保障合同3篇
- 2024年足疗服务人员聘用协议样本版B版
- 二零二五版2025年度个体美容美发店合伙合作协议3篇
- 二零二五版物联网技术在农业应用合伙协议3篇
- 二零二五年度绿色建筑门窗安装及节能认证协议3篇
- 二零二五版货物搬运与物流信息平台建设合同3篇
- 《UL线材培训资识》课件
- 《精密板料矫平机 第1部分:型式和基本参数》
- 监理报告范本
- 店铺交割合同范例
- 大型活动LED屏幕安全应急预案
- 2024年内蒙古包头市中考道德与法治试卷
- 湖南省长沙市2024-2025学年高二上学期期中考试地理试卷(含答案)
- 自来水质量提升技术方案
- 金色简约蛇年年终总结汇报模板
- 农用地土壤环境质量类别划分技术指南(试行)(环办土壤2017第97号)
- 反向开票政策解读课件
评论
0/150
提交评论