版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1特殊二次函数特殊二次函数(hnsh)的图象的图象第一页,共16页。一般一般(ybn)(ybn)地地, ,解析式形如解析式形如的函数的函数(hnsh),(hnsh),叫做二次函数叫做二次函数(hnsh).(hnsh).y=axy=ax2 2+bx+c (+bx+c (其中其中a a、b b、c c为常数为常数, ,a0a0) )二次函数二次函数: :二次函数二次函数y=axy=ax2 2+bx+c +bx+c ( a0a0)的)的定义域定义域( (自变量的取值范围)自变量的取值范围)为为一切实数一切实数。第1页/共16页第二页,共16页。1.1.一次函数图象一次函数图象(t xin)(t
2、 xin)的形状是什的形状是什么?么?+12.2.反比例函数反比例函数(hnsh)(hnsh)图象的形状是什么?图象的形状是什么?一条一条(y tio)(y tio)直线直线双曲线双曲线 二次函数的图像是什么形状呢二次函数的图像是什么形状呢? ? 第2页/共16页第三页,共16页。操作操作: :在平面在平面(pngmin)(pngmin)直角坐标系中直角坐标系中, ,画二次函数画二次函数y=x2 y=x2 的图像的图像. .第3页/共16页第四页,共16页。x x -3-3 -2 -2 -1 -10 01 1 2 23 3y y画函数画函数(hnsh)y=x2(hnsh)y=x2的图像的图像解
3、解: (1) : (1) 列表列表(li bio)(li bio)9 94 41 10 01 14 49 9(2) (2) 描点描点(3) (3) 连线连线1 2 3 4 5x12345678910yo-1-2-3-4-5 根据表中根据表中x,yx,y的数值在坐的数值在坐标平面中描点标平面中描点(x,y),(x,y), 还记得如何用还记得如何用描点法画一个函数描点法画一个函数的图像吗的图像吗? ?y=xy=x2 2用光滑的曲线顺次连接各点用光滑的曲线顺次连接各点, ,就得到就得到y=xy=x2 2的图像的图像. .第4页/共16页第五页,共16页。观察观察: :函数函数y=x2 y=x2 的图
4、像的图像(t xin)(t xin)的形状,位置有什么特的形状,位置有什么特征?征? 1 2 3 4 5x12345678910yo-1-2-3-4-5归纳归纳: 抛物线抛物线 y=x2 的开口方向向上的开口方向向上;它是轴对称图形它是轴对称图形,对称轴是对称轴是y轴轴,即直线即直线(zhxin)x=0. 抛物线抛物线y=x2 与与y轴的交点是原点轴的交点是原点O(0,0);除这个交点外除这个交点外,抛物线上的所有点都抛物线上的所有点都在在x轴的上方轴的上方,这个交点是抛物线的最这个交点是抛物线的最低点低点. 抛物线与它的对称轴的交点叫做抛抛物线与它的对称轴的交点叫做抛物线的顶点物线的顶点.抛
5、物线抛物线 y=x2 的顶点是原的顶点是原点点O(0,0). 概念概念:二次函数二次函数 y=x2 的图像是一条曲线的图像是一条曲线,分别向左上方和右上方分别向左上方和右上方 无限伸展无限伸展(shnzhn). 这类曲线称为抛物线这类曲线称为抛物线.第5页/共16页第六页,共16页。试一试试一试: :在平面直角坐标系中在平面直角坐标系中, ,画二次函数画二次函数(hnsh)y=-(hnsh)y=-x2 x2 的图像的图像, ,再归纳它的图像特征再归纳它的图像特征. .第6页/共16页第七页,共16页。x x -3-3 -2 -2 -1 -10 01 1 2 23 3y y请画函数请画函数(hn
6、sh)y=(hnsh)y=x2x2的图像的图像解解: (1) : (1) 列表列表(li bio)(li bio) -9-9 -4-4-1 -10 0-1 -1-4-4 -9-9 (2) (2) 描点描点(3) (3) 连线连线 根据表中根据表中x,yx,y的数值在的数值在坐标平面中描点坐标平面中描点(x,y),(x,y),再用光滑曲线顺次连接各再用光滑曲线顺次连接各点点, ,就得到就得到y=-xy=-x2 2的图像的图像. .1 2 3 4 5x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=y=x x2 2第7页/共16页第八页,共16页。观察观察: :函数函数y=
7、-x2 y=-x2 的图像的形状,位置的图像的形状,位置(wi zhi)(wi zhi)有什么特有什么特征?征?归纳归纳:二次函数二次函数y=-x2的图像也是一条抛的图像也是一条抛物线,分别物线,分别(fnbi)向左下方和右下方向左下方和右下方无限伸展无限伸展. 1 2 3 4 5x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10抛物线抛物线 y=-x2 y=-x2 的开口方向向下的开口方向向下; ;它是轴对称图形它是轴对称图形(txng),(txng),对称轴是对称轴是y y轴轴, ,即即直线直线x=0.x=0. 抛物线抛物线y=-x2 y=-x2 与与y y轴的交点是原
8、点轴的交点是原点(0,0);(0,0);除这个交点外除这个交点外, ,抛物线上的所有点都抛物线上的所有点都在在x x轴的下轴的下 方方, ,这个交点是抛物线的最高点这个交点是抛物线的最高点. . 抛物线与它的对称轴的交点叫做抛物线的抛物线与它的对称轴的交点叫做抛物线的顶点顶点. .抛物线抛物线 y=-x2 y=-x2 的顶点是原点的顶点是原点O(0,0).O(0,0).第8页/共16页第九页,共16页。x x -4-4-3-3-2 -2 -1 -10 01 1 2 23 34 4y= xy= x2 2例例1. 1.在同一在同一(tngy)(tngy)直角坐标系中画出函数直角坐标系中画出函数y=
9、 x2y= x2和和y=2x2y=2x2的图像的图像解解: (1) : (1) 列表列表(li bio)(li bio)(2) (2) 描点描点(3) (3) 连线连线1 2 3 4 5x12345678910yo-1-2-3-4-51 12 2x x-2-2-1.5-1.5-1 -1 -0.5-0.50 00.50.51 11.51.52 2y=2xy=2x2 28 82 20 02 28 88 82 20.50.50 00.50.52 24.54.58 84.54.51 12 2 函数函数y= xy= x2 2,y=2x,y=2x2 2的图的图像与函数像与函数y=xy=x2 2( (图中虚
10、线图形图中虚线图形) )的图像相比的图像相比, ,有什么共同点和有什么共同点和不同点不同点? ?1 12 2共同点共同点: :不同点不同点: :开口向上开口向上; ;除顶点外除顶点外, ,图像都在图像都在x x轴上方轴上方开口大小不同开口大小不同; ;第9页/共16页第十页,共16页。1 2 3 4 5x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10 x x -4-4 -3-3 -2 -2 -1 -10 01 1 2 23 34 4在同一直角坐标在同一直角坐标(zh jio zu bio)(zh jio zu bio)系中画出函数系中画出函数y=y= x2 x2和和y=y
11、=2x22x2的图像的图像解解: (1) : (1) 列表列表(li bio)(li bio)(2) (2) 描点描点(3) (3) 连线连线1 12 2x x -2-2-1.5-1.5-1 -1 -0.5-0.50 00.50.51 11.51.52 2y=y=2x2x2 2-8-8-2-2 -0.5-0.5 0 0 -0.5-0.5 -2-2-4.5-4.5-8-8-4.5-4.5-8-8-2-2 -0.5-0.50 0 -0.5-0.5 -2-2-4.5-4.5-8-8-4.5-4.5 函数函数y=y= x x2 2,y=,y=2x2x2 2的的图像与函数图像与函数y=y=x x2 2(
12、 (图中虚线图形图中虚线图形) )的图像相比的图像相比, ,有什么共同点和不有什么共同点和不同点同点? ?1 12 2共同点共同点: :不同点不同点: :开口向下开口向下; ;除顶点外除顶点外, ,图像都在图像都在x x轴下方轴下方开口大小不同开口大小不同; ;1 12 2y=- x2第10页/共16页第十一页,共16页。1 234 5x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-1012345 x12345678910yo-1-2-3-4-5一般地一般地, ,二次函数二次函数y=ax2 (a0 )y=ax2 (a0 )的图像是抛物线,的图像是抛物线,称为抛物线称为抛物线y=ax2y=ax2抛物线抛物线y=ax2y=ax2的对称轴是的对称轴是y y轴轴, ,即直线即直线x=0;x=0;顶点是原点顶点是原点. .开口方向开口方向(fngxing)(fngxing)由由a a的符号决定。的符号决定。 当当a0a0时时, ,抛物线的开口抛物线的开口向上向上(xingshng),(xingshng),顶点顶点是抛物线的最低点是抛物线的最低点; ; 当当a a0 a0 a0 a0a0时时, ,抛物线的开口向上抛物线的开口向上, ,顶点(顶点(0 0,0 0)是抛物线的最低点)是抛物线的最低点; ; 当当a0a0 a0 a0 a0 a0 a0 xyo第13页/共1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年衡阳幼儿师范高等专科学校单招职业技能考试题库及答案详解一套
- 黄梅县公务员面试题目及答案
- 2025年晋江公开招聘28名政府专职消防员28人备考题库及参考答案详解1套
- 2025年钦州市灵山县赴高校招聘教师135人备考题库及参考答案详解
- 中国人民人寿股份有限公司2026届校园招聘备考题库及答案详解1套
- 2025年玉溪川洋产业发展有限公司招聘工作人员备考题库及答案详解1套
- 国航股份商务委员会2026届高校毕业生校园招聘8人备考题库含答案详解
- 2025年大连理工大学力学与航空航天学院科研助理招聘备考题库及答案详解参考
- 2025年新疆阳光城市投资发展(集团)有限公司备考题库有答案详解
- 2025年甘德县域紧密型医共体总院编外人员招聘备考题库及答案详解一套
- DB33∕T 2320-2021 工业集聚区社区化管理和服务规范
- 学堂在线 雨课堂 学堂云 人工智能原理 章节测试答案
- 地铁资料城市轨道交通设备系统控制中心
- qPCR实时荧光定量PCR课件
- 企业数字化转型发言稿
- GB/T 3089-2020不锈钢极薄壁无缝钢管
- GB/T 2878.2-2011液压传动连接带米制螺纹和O形圈密封的油口和螺柱端第2部分:重型螺柱端(S系列)
- GB/T 23331-2020能源管理体系要求及使用指南
- GB/T 21238-2016玻璃纤维增强塑料夹砂管
- 化学品安全技术说明书氩气MSDS
- 斯坦福手术室应急手册中文版
评论
0/150
提交评论