版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.1整数和整除的意义课题教时1教学目标设计整数和整除的意义是六年级的第一节课,为此在教学设计中比较注重学生学习兴趣的培养和数学学习方法的体验。对于整数和整除这两个比较抽象的概念从学生的实际生活和年龄特点出发,体现数学知识的形成是从具体到抽象的过程。在理解概念的基础上,通过一些辨析题起到巩固知识的目的。对学生状态分析目标制定依据教学重点教学难点理解和掌握整除的概念。理解和掌握整除的概念。教学准备教学内容课件制作其他准备多媒体教师活动学生活动设计意图一、提出问题一、分类讨论二、新课讲授二、学生交流三、总结归纳三、学生练习这是小学生进入中学的第一节课,如何充分调动学生的学习积极性,养成积极探索新知
2、的欲望,形成畅所欲言的学习气氛是这节课,也是今后数学课教师要关注的重点。第一节课非常顺利地上完,学生反应热烈,反馈效果良好。教学后记教案设计1.1整数和整除的意义教学目标1、在“分类归纳”的过程中,理解自然数与整数的意义。2、在“实验猜想归纳“的过程中,理解和掌握整除的概念。3、通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力,并从而树立学好数学的自信心。重点、难点:理解和掌握整除的概念。教学过程一、建立整数和自然数的概念:1、口答:根据一定的依据把老师念出来的数分一分类,并说明理由。(小组讨论)(小组讨论、归纳、交流)归纳:在数物体的时候,用来表示物体
3、个数的数1、2、3、4 ,叫做正整数。在正整数 1、2、3、 4 的前面添上“”号,得到的数-1 、-2 、-3 、-4 ,叫做负整数。零和正整数统称为自然数。正整数、零和负整数,统称为整数。2、把下列各数填在适当的圈内:12 、-6 、0、1.23 、 6 、2005、-19.6 、97正整数自然数整数二、建立整除的概念:1、你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。)2、你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。(小组讨论)我们小组的分类:(根据需要填写)1、_2、_3、_分类的理由:1、_2、_3、_3、请同学们仔细观察黑板上除法算式里的被除数
4、、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?归纳:整数 a 除以整数 b,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除 a。2、判断下列哪一个算式的被除数能被除数整除10÷348÷86÷4(教师板演)3、互动游戏:一位同学说一个除法算式,同桌判断是不是整除?并说明谁能被谁?谁能整除谁?教师引导归纳;( 1) 除数、被除数都是整数。( 2) 被除数除以除数,商是整数而且没有余数。练习: P5 24、一展身手:( 1) 有 15 位同学参加学校组织的夏令营活动, 老师准备把她们平均分成若干小组,有几种分法能?有可能把他
5、们平均分成4 个小组吗?为什么?( 2)一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒 342 个,小马虎统计错了?为什么?三、课堂小结:1、今天我学会了什么?2、在学习的过程中我学会了什么方法?四、布置作业:完成练习册1.2因数和倍数课题教时1教学目标设计因数和倍数是在整除基础上的进一步研究,因此在学生原有知识的基础上建立因数和倍数的概念,关键是使学生理解因数和倍数之间的相互依存关系,同时也是对整除概念的进一步巩固。在教学设计中通过一些辨析题是学生更透彻的理解概念。在求一个数的因数和倍数的过程中培养学生的观察和归纳问题的能力,在学生学和解决问题的同时培养良好的学
6、习习惯。对学生状态分析目标制定依据教学重点教学难点1、理解和掌握因数和倍数的意义2、引导学生探索并理解因数和倍数之间的相互依存的关系。教学准备教学内容课件制作其他准备多媒体教师活动学生活动设计意图创设情境,提出问题一、分类讨论学习概念,巩固概念理解概念,实际应用二、学生交流三、学生练习在学习求一个数的因数和倍数的过程中,教师不仅要让学生学会找出一个数的因数和倍数,更要关注对学生观察能力、归纳能力的培养,在学生归纳总结的过程中让学生体验到数学不仅是会解题,同时要学会寻找具有共性的东西,在归纳中也锻炼学生的口头表达能力。教学后记因数的寻找不够齐全,总有遗漏,倍数的寻找学生也喜欢随意讲,因此找到的答
7、案反倒是数字较大。教案设计1.2因数和倍数教学目标1、理解和掌握因数和倍数的意义,了解因数和倍数相互依存的关系。会根据因数和倍数的意义描述两个数之间的关系。2、知道一个数的因数和倍数的求法 。3知道一个数的因数是有限个,一个数的倍数是无限个。4、渗透初步的辩证唯物主义思想教育。激发学生的交流、对话的意识,培养学生数学语言的表达能力。重点、难点1、理解和掌握因数和倍数的意义。2、引导学生探索并理解因数和倍数之间的相互依存的关系。教学过程一、创设情景,引出概念1、问题情景:有 12 块边长是 1 个单位长度的的正方形可以拼成几个形状不同的长方形?它们的长和宽分别是多少? (第一问先请学生独立画出草
8、图, 然后小组交流。 第二问在第一问的基础上共同完成。 )2、12 与 1、 2、 3、4、6、12 有什么关系?看书 P6(概念)3、说说 12 与 1、2、3、4、6、12 有的关系。(同桌互相交流)判断:能不能说12 是倍数, 3 是因数?强调:因数与倍数是相互依存的。如果光说谁是倍数,或谁是因数是不完整的。4、火眼金睛:你认为哪些是对的, 哪些是错的,错在哪儿?(1)42 ÷6=7, 所以 42 是 6 的倍数, 6 是 42 的因数(2) 42 ÷6=7, 所以 42 是倍数 ,6 是因数(3)42 ÷9=4 6, 所以 42 是 9 的倍数 ,9 是
9、42 的因数(4)4.2 ÷0.6=7 , 所以 4.2 是 0.6 的倍数 ,0.6 是 4.2 的因数(5)4.2 ÷0.6=7, 所以 4.2 是 0.6 的 7 倍。11181818209218209122 2333×1=33÷3=13×2=66÷3=23×3=99÷3=3 454P 741151523363641540612182430361、因数和倍数有什么关系?课题1.3 能被 2、5 整除的数教时1教学 1、掌握能被 2、5 整除的数的特征,理解奇数、偶数的定义;目标 2、渗透由特征到一般的思想方法
10、,让学生体验结论的探究过程。设计对学生状态分析目标制定教学重点对奇数、偶数的理解。依据教学难点对能被 2、5 整除的整数特征的揭示。2、如何求一个数的因、数?找一个数的因数时,如何防止遗漏?3、如何求一个数的倍数?六、布置作业完成练习册教学课件制作准备其他准备教学教师活动学生活动内容一、教师 引一、分类讨论导、学生探究二、学生交流二、归 纳总结、得出规律三、学生练习三、偶数与奇数的概念设计意图对奇数、偶数之间运算结果的探究可让学生自己完成,老师可以通过表格的形式总结,在今后的学习中经常用到这类结论。本节课的设计试图创设学生主动学习的环境,让学生感悟数学中的一些重要思想方法,并掌握相关的数学知识
11、。反馈的作业情况不是很好,但多数学生已经习惯及时订正了。教学后记教案设计1.3 能被 2、5 整除的数教学目标 :1、掌握能被 2、5 整除的数的特征,理解奇数、偶数的定义;2、渗透由特征到一般的思想方法,让学生体验结论的探究过程。教学重点 :对奇数、偶数的理解。教学难点 :对能被 2、5 整除的整数特征的揭示。教学过程 :一、教师引导、学生探究课题1.4( 1)素数、合数与分解素因数2教时1、请学生回答上节课布置的思考作业2、让每位同学各写10 个整数;3、你所写的整数中哪些能被2 整除?哪些能被5 整除?4、你能发现被2 整除的整数的特征吗?能被5 整除的整数的特征?二、归纳总结、得出规律
12、1、能被 2 整除的整数,个位上数字为0、 2、 4、 6、 8。能被 5 整除的整数,个位上数字为0、 5。2 根据这一特征你能随意写出能被2 整除或能被 5 整除的整数吗?既能被2整除又能被 5 整除的整数特征又是什么?三、偶数与奇数的概念1、定义:如果一个整数能被2 整除,称该整数为偶数。如果一个整数不能被2 整除,称该整数为奇数。奇数2、整数的分类偶数3、奇、偶数经过运算后的变化情况:奇奇=偶偶偶=偶奇偶=偶奇奇=奇偶偶=偶奇偶=偶注:相邻两个整数之和(之差)为奇数,之积为偶数。四、学生小结五、 回家作业:完成练习册教学目标设计1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因
13、数的几种方法,熟练掌握用短除法分解素因数。2、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。对学生状态分析目标制定依据教学重点教学难点分解素因数素数与分数、合数与偶数概念的辨析教学准备教学内容课件制作其他准备教师活动学生活动一、素数、合数概念的一、分类讨论引发二、素数、合数概念的形成二、学生交流三、对概念的认识四、课堂反馈和小结三、学生练习设计意图素数、合数与分解素因数是整数部分学生学习的难点,因为前面学过奇数、偶数,现在又学习素数、合数,学生很容易混淆,因此在本节内容的教学设计中,注重学生的感悟,注重对一些概念的辨析、比较,体现以学生的主动学习为主的理念。内容
14、简单,所以学生反映不错。教学后记教案设计课题1.4 (2)素数、合数与分解素因数教时21.4 (1)素数、合数与分解素因数教学目标: 1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因数的几种方法,熟练掌握用短除法分解素因数。2 、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。教学重点:分解素因数教学难点:素数与分数、合数与偶数概念的辨析教学过程:一、素数、合数概念的引发1、每位同学写两个整数,并写出它们的因数。2、提问:你写出的整数有几个因数?(教师在黑板上列一张表)因数个数确定吗?整数因数个数由此可以发现,有些整数只有一个因数,有些有 2 个因数,即
15、 1 和本身,有些有 3 个、4个 二、素数、合数概念的形成1、概念:我们把只含有因数 1 和本身的整数叫做素数或质数,如果除了 1 和它本身还有别的因数,这样的数叫做合数。2、你能写出几个素数?几个合数?三、对概念的认识探讨一:1)1 是素数还是合数? 2 是素数还是合数?2)除 1 外你能举出一个既不是素数也不是合数的整数吗?3)是否存在这样的正整数,既是素数,又是合数?4)按素数、合数对正整数分类,可分为几类?探讨二:1)合数与偶数、 素数与奇数相同吗?若不同,你能讲出区别吗? (举例说明)2)整数 1 到底是什么“身份”?你能讲清楚吗?四、课堂反馈:课本 P12 练习五、课堂小结:师生
16、共同完成。六、回家作业:完成练习册教学目标设计1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因数的几种方法,熟练掌握用短除法分解素因数。2、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。对学生状态分析目 标 制定依据教学重点分解素因数教学准备教 学 内容素数与分数、合数与偶数概念的辨析教学难点课件制作其他准备教师活动学生活动一、素数、合数概念的一、分类讨论引发二、素数、合数概念的形成二、学生交流三、对概念的认识四、课堂反馈和小三、学生练习结设计意图第二课时主要任务是让学生学会分解素因数,首先让学生自己写出两个整数,再要求分别写成几个素数乘积的形式,这一
17、过程实际上让学生初步建立了分解的过程,同时也让学生体验了只有合数才能分解成几个素数之积的形式,从而引出分解素因数的概念,很自然地提出如何分解素因数的问题,通过教师的介绍三种常用的方法,特别强调用短除法进行分解,从中让学生体会到数学方法的多样性及可选择性。由于这节课讲了什么叫素因数,就和前面的因数,素数概念混淆、了。所以再次给学生通过举例来说明这三个概念的差别之处。分解素教学后因数的几种方法学生理解不错,但关键是学生容易粗心,没有把合数记分到最后。课题1.5 公因数和最大公因数教时1教案设计1.4 (2)素数、合数与分解素因数教学目标: 1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因
18、数的几种方法,熟练掌握用短除法分解素因数。2 、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。教学重点:分解素因数教学难点:素数与分数、合数与偶数概念的辨析教学过程:一、创设情景引入新课每位同学写出两个整数,然后再将它们写成几个素数相乘的形式。(请几位同学板书)有没有哪位同学所写的整数不能写成几个素数的乘积?由此你能得出怎样的结论? (每个合数都可以写成几个素数相乘的形式 )教师总结:引出素因数、分解素因数。如何将一个合数分解素因数?二、分解素因数的方法1)“树枝分解法”例:将 48、35、60 分解素因数(图省略)48=2322235=5760=2325说明:
19、先将该合数分解成两个因数之积,再将其中的合数分解, 一直分到不能再分为止。短除法2)例 2:把 24、35、 64 分解素因数说明:用短除法分解素因数的步骤如下: 1, 2,3。 ( 见课本 ) 特别强调这种方法的解题程序,并且设计多种形式的训练,以达到熟练掌握。计算器分解法3)例:将 1334 分解素因数说明:首先用计算器将合数分成两个整数之积, 再分别对两个整数进行分解,最终化为素数之积的形式。三、探讨;分解素因数与分解因数有何相同点和不同点?四、学生练习: P14 练习 1、4(2)五、课堂总结:学生学习的感受。六、回家作业:练完成习册。教学目标设计目 标 制定依据教学准备教 学 内容1
20、通过解决实际问题的活动,进一步理解公因数,最大公因数和素因数的意义,掌握求两个数的公因数,最大公因数的基本方法。2经历对问题的分析,观察,找规律,讨论的过程,进一步加深对公因数,最大公因数和素因数意义的理解,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。对学生状态分析理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么教学重点区别。理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么教学难点区别。课件
21、制作其他准备教师活动学生活动设计意图一、情景引入二、学习新课三、巩固练习四、找规律一、分类讨论二、学生交流三、学生练习、教学后记教案设计1.5 公因数和最大公因数教学目标1通过解决实际问题的活动,进一步理解公因数, 最大公因数和素因数的意义,掌握求两个数的公因数,最大公因数的基本方法。2经历对问题的分析,观察,找规律,讨论的过程,进一步加深对公因数,最大公因数和素因数意义的理解,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。教学重点与难点: 理解公因数, 最大公因数和素因数的意义
22、,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别。教学过程一、 情景引入练习:请大家拿出练习本,分别写出6 的因数,8 的因数6的因数:1、2、3、68的因数:1、2、4、8教师:太好了,我们已经学会找一个数的因数那么请你们仔细看一看,学生不难答出 6 和 8 的公有的因数是1 和 2猜想:这样老师就可以让学生猜想几个数的公因数的定义:几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数二、学习新课问题的提出: 植树节这天, 老师带领 24 名女生和 32 名男生到植物园种树, 老师把这些学生分成人数相等的若干个小组,每个小组的男生人数都相等,请问,这5
23、6 名同学最多分成几组?问题的分析:124 和 32 的因数是多少?224 和 32 的公因数是多少?324 和 32 的最大公因数是多少?问题的答案:24 的因数有: 1,2,3,4,6,8,12,2432 的因数有: 1,2,4,8,16,3224 和 32 的公因数是 1,2,4,824 和 32 的最大公因数是 8问题的引伸:3,6,12,241,2,4,816,32因此老师最多可以把这些学生分成 8 组,每组中分别有 3 名女生和 4 名男生例题 1 求 8 和 9 的所有公因数,并求它们的最大公因数解: 8 的因数有 1,2,4,89 的因数有 1,3,98 和 9 只有公因数 1
24、,因此 8 和 9 的最大公因数是 1如果两个整数只有公因数1,那么称这两个数互素例题 1中的 8和9就是互素的例题 2 8 和 12 各有哪些因数,它们公有的因数是哪几个?最大的公有的因数是多少?学生口答教师板书:8 的因数有 1, 2, 4, 812 的因数有 1,2,3,4,6,128 和 12 公有的因数有 1, 2, 438 和 12 的最大的公有的因数有482641教师:下面用图表示(几何画板12演示)教师:第二幅中阴影部分表示什么? (8 和 12 公有的因数, 4 是最大的。 ) 强调:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数例题 3 求
25、 18 和 30 的最大公因数解法 118 的因数有 1,2,3,6, 9, 1830 的因数有 1, 2, 3, 5, 6, 10,15,3018 和 30 的公因数有 1,2,3,6最大的公因数是 6拓展以上的例题 3 有没有更快捷的方法呢?解法 2:把 18 和 30 分别分解素因数18=2×3×330=2×3×5可以看出, 18 和 30 全部共有的素因数是2 和 3,因此 2 和 3 的乘积 6 就是18 和 30 的最大公因数求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数解法 3为了简便,也可以用短除法计算2
26、1830(用公用的素因数2 除)3915(用公用的素因数3 除)35(除到两个商互素为止)18和30的最大公因数是 2×3=6例题 4求 48 和 60 的最大公因数解: 24860(用公用的素因数2 除)22430(用公用的素因数2 除)1215(用公用的素因数3 除)45(除到两个商互素为止)48 和 60 的最大公约数是2× 2× 3=12三、巩固练习1口答填空:12 的因数是 ();18 的因数是 ();12和 18的公因数是 ();12和 18的最大公因数是 ()2把 15 和 18 的因数、公因数分别填在下面的圈里,再找出它们的最大公因数请找出下面各组
27、数的公因数:5和78和91和129和157和916和 20答案:学生口答后老师在每组后面标出公因数。5 和 7(1)8 和 9(1)1 和 12(1)1.6 公倍数与最小公倍数( 1)教时2课题9 和 15(1,3)7 和 9(1)16 和 20(1,2,4)3快速回答:24 的因数是 ();36 的因数是 ();54 的因数是 ();24, 36和 54 的公因数是 ();24, 36和 54 的最大公因数是 ()四、找规律观察:(1)3 和 5 的最大公因数是(2)18 和 36 的最大公因数是;(3)6 和7 的最大公因数是;(4)8 和15 的最大公因数是通过求这四组数中的最大公因数,
28、你发现了什么规律?规律:两个整数中, 如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1五、布置作业教学目标设计1通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数;会求是互素数或有倍数关系的两个数的最小公倍数,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。对学生状态分析目 标 制定依据教学重点分解素因数教学准备教 学 内容素数与分数、合数与偶数概念
29、的辨析教学难点课件制作其他准备教师活动学生活动一、分类讨论一、情景导入二、新知识的探索二、学生交流三、巩固加深设计意图在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好四、课堂练习三、学生练习学习习惯的养成和沟通、交流能力的提高。学生找到往往不是最小公倍数,总是找到一些数字很大的数作分母,教 结果计算时就很容易出错。学后记教案设计1.6 公倍数与最小公倍数( 1)教学目标1通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公
30、倍数;会求是互素数或有倍数关系的两个数的最小公倍数, 体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。教学重点和难点: 会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数 。教学过程:一、情景导入问题的提出:在上海南站,地铁 1 号线每隔 3 分钟发车,轨道交通 3 号线每隔 4 分钟发车,如果地铁 1 号线和轨道交通 3 号线早上 6:00 同时发车,那么至少再过多少时间它们又同时发车?问题的分析:早晨6 点以后地铁 1 号线发车间隔的时间(分钟)是3 的倍数,而轨道交通
31、 3 号线发车的时间(分钟)是4 的倍数,这个问题可以转化为求3 和 4 的最小公倍数师(启发式):谁能用自己的话说一说什么叫公倍数?问题的探究:1、看了这个问题题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。2、四人一组合作解决1-2 个问题,举例说明,组长笔录。3、成果汇报:(由学生任选一种方法)(1)公倍数有多少个?(2)求最小公倍数的方法问题的解决:3 的倍数有: 3,6,9,12,15, 18,21,24,274 的倍数有: 4,8,12,16, 20,24,28,36,403 和 4 公有的倍数有: 12,24 其中最小的一个是123691248162028151824
32、.2127.36403 和4 公有的倍数所以 12 分钟后地铁 1 号线和轨道 3 号线再次同时发车二、新知识的探索几个整数的公有的倍数叫做他们的公倍数,其中最小的一个叫做它们的最小公倍数 .例题 1求 18 和 30 的最小公倍数 .(这个题可以让学生先做, 在上个问题的分析的基础上, 学生对这个问题会很感兴趣,可以采取比赛的方法)解法 1: 18 的倍数有 18, 36,54,72, 90, ;30的倍数有 30 ,60,90, 120,160, .所以 18 和 30 的最小公倍数是90.拓展:又没有更快捷的方法呢?解法 2:把 18 和 30 分解素因数18=2×3×
33、;330=2×3×5探究:18 和 30 的公倍数里, 应当既包含 18 的所有素因数, 又包括 30 的所有素因数,但相同的素因数可以只取一个,只要取出 18,30 的所有公有的素因数( 1 个 2 和 1 个 3),再取各自剩余的素因数( 3 和 5),将这些数连乘,所得得积 2× 3× 3× 5( 90)就是 30 和 18 的最小公倍数所以 18 和 30 的最小公倍数是 90(2×3×3×5)这个方法学生比较容易接受18 的素因数30 的素因数335218和30公有的素因数归纳:求两个整数的最小公倍数,
34、只要取它们所有公有的素因数, 再取它们各自剩余的素因数,将这些数连乘,所得得积就是这两个数的最小公倍数。拓宽:在上面的问题中还有其它的方法吗?-可以用短除法解法 321830用公有的素因数2除3915用公有的素因数3除35除到两个商互素为止18 和 30 的最小公倍数是2×3×3×5=90三、巩固加深四、课堂练习1求 36 和 84 的最小公倍数在解这个题的时候, 不要说明用哪一个方法好, 学生们会在摸索的时候发现短除法的优势解:23684用公有的素因数2除21842用公有的素因数2除3921用公有的素因数3除37除到两个商互素为止36 和 84 的最小公倍数是2
35、×2×3×3×7=2522求 30 和 45 的最大公因数和最小公倍数在解这个题的时候, 也是不要说明用哪一个方法好, 学生们会在摸索的时候发现短除法的优势,他们开始理解这个方法33045用公有的素因数3除51015用公有的素因数5除23除到两个商互素为止1.6 (2)公倍数与最小公倍数(2)课题教时2教学目标设计1通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数;会求是互素数或有倍
36、数关系的两个数的最小公倍数,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。30 和 45 的最大公因数是3× 5=1530 和 45 的最小公倍数 3×3×2×5=90五、回家作业:完成练习册目 标 制定依据教学准备教 学 内容对学生状态分析会合理使用列举法、分解素因数法、短除法求两个数教学重点的最小公倍数会合理使用列举法、分解素因数法、短除法求两个数教学难点的最小公倍数课件制作其他准备教师活动学生活动设计意图四、 知识拓宽,问题的一、分组讨论在积极思考、积极提出五、 小结:二、学生交流参与讨论的活动中,自觉改进学三、学生练习习,促进
37、良好学习习惯的养成和沟通、交流能力的提高。、教学后记通过两节课的练习,效果有所进步,但是学生又和找几个数的最大公因数相混淆,容易将每个数本各自剩余的素因数忘了一起乘起来。最终造成计算答案的错误。教案设计1.6 公倍数与最小公倍数(2)教学目标1通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数;会求是互素数或有倍数关系的两个数的最小公倍数, 体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3在积极思考、积极
38、参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。教学重点和难点: 会合理使用列举法、 分解素因数法、 短除法求两个数的最小公倍数教学过程:四、 知识拓宽1问题的提出:3 和 5 的最小公倍数是;18 和 36 的最小公倍数是;8 和 9 的最小公倍数是;8 和 15 的最小公倍数是.通过求这四组数的最小公倍数,你发现了什么规律了吗?如果两个整数中某一个数是另一个数的倍数, 那么这个数就是它们的最小公倍数,如果两个数互素,那么它们的乘积就是它们的最小公倍数2问题的提出:最大公约数与最小公倍数之间有什么关系?最小公倍数是两个数的最大公约数与各自独有素因数的乘积3问题的
39、提出:求最小公倍数与求最大公因数比较有什么异同之处?(分组讨论)短除法与分解素因数有什么联系?任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):16 和 20;65 和 130;4 和 15; 18 和 24。再次强调:当两个数是互素数时, 最小公倍数是这两个数的乘积; 当两个数有倍数关系时,最小公倍数是较大的数。4问题的提出: :求两个数的最大公约数和最小公倍数在求法上有什么相同点?有什么不同点?相同点都是用短除法分解素因数,直到两个商是互素数为止。不同点是求最大公约数是把所有的除数乘起来, 而求最小公倍数是把所有的除数和商乘起来。如图:求两个数的最大公约数求两个数的最小公倍数相同点用短除法分解素因数,直用短除法分解素因数,直到两个商是互素数为止到两个商是互素数为止不同点把所有的除数乘起来把所有的除数和商乘起来规律:这两种不同求法用的是同一个短除式, 因此写一个短除式就可以了。 要求最大公约数就把这两个数的除数相乘, 要求最小公倍数就把除数和商乘起来。 完成短除式后,求最大公约数是乘半边,求最小公倍数是乘半圈。五、 小结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?六、作业布置1、完成练习册2、预习新课课题2.1 分数与除法教时11理解分数与除法的关系教学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业模具供应销售协议范本一
- 2024年代收付款业务合作合同版B版
- 2024年产品市场推广及销售代理合同
- 江南大学《电力变换技术》2021-2022学年第一学期期末试卷
- 佳木斯大学《药物分析专业创新创业拓展》2021-2022学年第一学期期末试卷
- 2024供水设施建设项目井施工合同版
- 2024基础型货物承运协议模板版B版
- 佳木斯大学《离散数学》2023-2024学年第一学期期末试卷
- 暨南大学《英语听说I》2021-2022学年第一学期期末试卷
- 2024合伙人股份转让协议模板范例
- APQP项目开发进度表
- 新能源小客车购车充电条件确认书
- PICCO监测技术及评分标准
- 小学体育五至六年级体育与健康3.2 轻度损伤的自我处理(课件)人教版(15张PPT)
- 家具店消防应急预案
- 新车提车验车表4页
- 浅谈区域财务一体化实施的有效方法
- 盾构穿越岩溶地区施工技术总结
- 慢性病健康管理教材
- 郑州数字经济发展现状与对策建议研究
- 中烟电子商务系统烟草物资交易平台会员管理办法
评论
0/150
提交评论