版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:不等式的性质(1)教学目的:1了解不等式的实际应用及不等式的重要地位和作用;2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小教学重点:比较两实数大小 教学难点:差值比较法:作差变形判断差值的符号 授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、引入:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解
2、不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系生活中为什么糖水中加的糖越多越甜呢?转化为数学问题:a克糖水中含有b克糖(ab0),若再加m(m0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为,加入m克糖 后的糖水浓度为,只要证即可怎么证呢?引人课题二、讲解新课:1不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式说明:(1)不等号的种类:、()、()、(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)(3)不等式研究的范围是实数集R2判断两个实数大小的充要条件对于任意两个实数a、b,在ab,a= b,ab三种关系中有且仅有一种成
3、立判断两个实数大小的充要条件是:由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了三、讲解范例:例1比较(a3)(a)与(a2)(a4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数式的大小 把比较两个实数大小的问题转化为实数运算符号问题本题知识点:整式乘法,去括号法则,合并同类项解:由题意可知:(a3)(a)(a2)(a4)(a22a1)(a
4、22a)0(a3)(a)(a2)(a4)例2已知x0,比较(x21)2与x4x21的大小分析:此题与例1基本类似,也属于两个代数式比较大小,但是其中的x有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略本题知识点:乘法公式,去括号法则,合并同类项解:由题意可知:(x21)2(x4x21)(x42x21)(x4x21)x42x21x4x21x2x0 x20(x21)2(x4x21)0(x21)2x4x21例2引伸:在例2中,如果没有x0这个条件,那么两式的大小关系如何?在例2中,如果没有x0这个条件,那么意味着x可以全取实数,在解决问题时,应分x0和x0两种情况进行
5、讨论,即:当x0时,(x21)2x4x21当x0时,(x21)2x4x21此题意在培养学生分类讨论的数学思想,提醒学生在解决含字母代数式问题时,不要忘记代数式中字母的取值范围,一般情况下,取值范围是实数集的可以省略不写得出结论:例1,例2是用作差比较法来比较两个实数的大小,其一般步骤是:作差变形判断符号这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要例3已知ab0,m0,试比较与的大小解:ab0,m0,a-b0,a+m0从而揭示“糖水加糖甜更甜”的数学内涵例4 比较a4-b4与4a3(a-b)的大小 解: a4-b4 - 4a3(a-b)=(a-b)(a+b)(
6、a2+b2) -4a3(a-b)= (a-b)(a3+ a2b+ab2+b3-4a3)(a-b)(a2b-a3)+(ab3-a3)+(b3-a3)= - (a-b)2(3a3+2ab+b2)=- (a-b)2 (当且仅当db时取等号)a4-b44a3(a-b)说明:“变形”是解题的关键,是最重一步因式分解、配方、凑成若干个平方和等是“变形”的常用方法例5 已知xy,且y0,比较与1的大小解: xy,x-y0 当y0时,0,即0时,0,即1说明:变形的目的是为了判定符号,此题定号时,要根据字母取值范围,进行分类讨论四、课堂练习:1在以下各题的横线处适当的不等号:(1)()2 2;(2)()2 (
7、1)2;(3) ;(4)当ab0时,loga logb答案:(1) (2) (3) (4)2选择题若a0,1b0,则有( )Aaabab2 Bab2aba Cabaab2 Dabab2a分析:利用作差比较法判断a,ab,ab2的大小即可a0,1b0ab0,b10,1b0,0b21,1b20abaa(b1)0abaabab2ab(1b)0abab2aab2a(1b2)0aab2故abab2a答案:D3比较大小:(1)(x)(x)与(x)2;(2)log与log解:(1)(x)(x)(x)2(x212x3)(x212x3)10(x)(x)(x)2(2)解法一:(作差法)loglog0loglog解
8、法二:(中介法,常以“1,0,1”作中介)函数ylogx和ylogx在(0,)上是减函数且loglog1,loglog1loglog4如果x0,比较(1)2与(1)2的大小解:(1)2(1)2(1)(1)(1)(1)或(x21)(x21)4x0 0 40(1)2(1)25已知a0,比较(a2a1)(a22a1)与(a2a1)(a2a1)的大小解:(a2a1)(a2a1)(a2a1)(a2a1)(a21)2(a)2(a21)2a2a2a0,a20 a20故(a2a1)(a2a1)(a2a1)(a2a1)五、小结 :本节学习了实数的运算性质与大小顺序之间的关系,并以此关系为依据,研究了如何比较两个实数的大小,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式第二步:判断差值与零的大小关系,必要时须进行讨论第三步:得出结论在某些特殊情况下(如两数均为正,且作商后易于化简)还可考虑运用作商法比较大小它与作差法的区别在于第二步,作商法是判断商值与1的大小关系六、课后作业:1已知,比较与的大小解: -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度无人机OEM研发与市场推广合同3篇
- 年度制冷空调机械竞争策略分析报告
- 二零二五版淀粉行业绿色生产与循环利用合同3篇
- 年度记忆绵枕市场分析及竞争策略分析报告
- 二零二五年度谷壳供应链金融服务合同3篇
- 2025年新型建筑装修工程施工企业信用担保合同范本3篇
- 铁矿粉购销合同模板2025年度2篇
- 二零二五年智能硬件研发项目技术合同登记管理细则3篇
- 2025年度钻井工程地质勘察合同3篇
- 2025年度盆景植物租赁与艺术展览合作合同范本
- 2025年生产主管年度工作计划
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 违规行为与处罚管理制度
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 《内部培训师培训》课件
- 《雷达原理》课件-3.3.3教学课件:相控阵雷达
- 西方史学史课件3教学
- 2024年中国医药研发蓝皮书
- 红色中国风蛇年年会邀请函
评论
0/150
提交评论