版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2 0 1 4 年初升高衔接教材(内部专用教材)2014/6/20初中数学与高中数学衔接紧密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即两个负数比较大小,绝对值大的反而小两个绝对值不等式:;或2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一
2、次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。关于方程解的讨论当时,方程有唯一解;当,时,方程无解 当,时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组(1)不等式:用符不等号(>、<)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都
3、乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根 方程有
4、两根同号 方程有两根异号 韦达定理及应用:, 8 函数(1)变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。当=0时,称是的正比例函数。(3)一次函数的图象及性质把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数=的图象是经过原点的一条直线。在一次函数中,当0, O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0, 0时,则经1
5、、3、4象限;当0, 0时,则经1、2、3象限。当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。(4)二次函数:一般式:(),对称轴是顶点是;顶点式:(),对称轴是顶点是;交点式:(),其中(),()是抛物线与x轴的交点(5)二次函数的性质 函数的图象关于直线对称。时,在对称轴 ()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值时,在对称轴 ()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值9 图形的对称(1)轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条
6、直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做轴或横轴,铅直的数轴叫做轴或纵轴,轴与轴统称坐标轴,他们的公共原点称为直角坐标系的原点。(2)平面直角坐标系内的对称点:设,是直角坐标系内的两点,若和关于轴对称,则有。若和关于轴对称,则有。若和关于原点对称,则有。若和关于直
7、线对称,则有。若和关于直线对称,则有或。11 统计与概率:(1)科学记数法:一个大于10的数可以表示成的形式,其中大于等于1小于10,是正整数。(2)扇形统计图:用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。(3)各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(5)平均数:对于个数,我们把()叫做这个个数的算术平均数,记为。(6)
8、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。(7)中位数与众数:N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣比较:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(8)调查:为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考
9、察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。(9)频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(10)数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差
10、的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(11)事件的可能性:有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。(12)概率:人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为1,记作(必然事件);不可能事件发生的概率为,记作(不可能
11、事件);如果A为不确定事件,那么1.1 数与式的运算 绝对值 乘法公式 二次根式1.1. 分式12 分解因式2.1 一元二次方程 根的判别式 根与系数的关系(韦达定理)22 二次函数 二次函数yax2bxc的图像和性质 二次函数的三种表示方式 二次函数的简单应用2.3 方程与不等式 二元二次方程组解法 一元二次不等式解法31 相似形平行线分线段成比例定理3.1.2相似形3.2 三角形3.2.1 三角形的“四心” 几种特殊的三角形33圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹1.1 数与式的运算1.1绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的
12、绝对值仍是零即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离例1 解不等式:4解法一:由,得;由,得;若,不等式可变为,即4,解得x0,又x1,x0;若,不等式可变为,即14,不存在满足条件的x;若,不等式可变为,即4, 解得x4又x3,x4综上所述,原不等式的解为 x0,或x413ABx04CDxP|x1|x3|图111解法二:如图111,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;|x3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|x3|所以,不等式4的几何意义
13、即为|PA|PB|4由|AB|2,可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧 x0,或x4练 习1填空:(1)若,则x=_;若,则x=_.(2)如果,且,则b_;若,则c_.2选择题:下列叙述正确的是 ( )(A)若,则 (B)若,则 (C)若,则 (D)若,则3化简:|x5|2x13|(x5). 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ;(2)完全平方公式 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 ;(2)立方差公式 ;(3)三数和平方公式 ;(4)两数和立方公式 ;(5)两数差立方公式 对上面列出的五个公式,有兴趣的同学可以
14、自己去证明例1 计算:解法一:原式= = =解法二:原式= = =例2 已知,求的值解: 练 习1填空:(1)( );(2) ;(3) 2选择题:(1)若是一个完全平方式,则等于 ( )(A) (B) (C) (D)(2)不论,为何实数,的值 ( ) (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数 二次根式 一般地,形如的代数式叫做二次根式根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 ,等是无理式,而,等是有理式1分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化为了进行分母(子)有理化,需要引入有理化因式的概念两个含有二次根式的代数式相乘
15、,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等 一般地,与,与,与互为有理化因式分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式2二次根式的意义例1 将下列式子化为最简二次根式:(1); (2); (3)解: (1); (
16、2); (3)例2计算:解法一: 解法二: 例3 试比较下列各组数的大小:(1)和; (2)和.解: (1), ,又, (2) 又 42, 42, .例4化简:解: 例 5 化简:(1); (2) 解:(1)原式 (2)原式=, 所以,原式例 6 已知,求的值 解:,练 习1填空:(1)_ _;(2)若,则的取值范围是_ _ _;(3)_ _;(4)若,则_ _2选择题:等式成立的条件是 ( )(A) (B) (C) (D)3若,求的值4比较大小:2 (填“”,或“”)1.1.分式 1分式的意义形如的式子,若B中含有字母,且,则称为分式当M0时,分式具有下列性质:; 上述性质被称为分式的基本性
17、质2繁分式像,这样,分子或分母中又含有分式的分式叫做繁分式例1若,求常数的值解: , 解得 例2(1)试证:(其中n是正整数); (2)计算:; (3)证明:对任意大于1的正整数n, 有(1)证明:, (其中n是正整数)成立(2)解:由(1)可知 (3)证明: , 又n2,且n是正整数, 一定为正数, 例3设,且e1,2c25ac2a20,求e的值解:在2c25ac2a20两边同除以a2,得 2e25e20, (2e1)(e2)0, e1,舍去;或e2 e2练 习1填空题:对任意的正整数n, ();2选择题:若,则 ( )(A) (B) (C) (D)3正数满足,求的值4计算习题11A 组1解
18、不等式: (1) ; (2) ; (3) 已知,求的值3填空:(1)_;(2)若,则的取值范围是_;(3)_B 组1填空: (1),则_ _;(2)若,则_ _;2已知:,求的值C 组1选择题:(1)若,则 ( ) (A) (B) (C) (D)(2)计算等于 ( )(A) (B) (C) (D)2解方程3计算:4试证:对任意的正整数n,有绝对值1(1); (2);或 2D 33x18乘法公式1(1) (2) (3)2(1)D (2)A二次根式1 (1)(2)(3)(4)2C 31 4分式1 2B 3 4习题11A组1(1)或 (2)4x3 (3)x3,或x321 3(1) (2) (3) B
19、组1(1) (2),或 24C组1(1)C (2)C 2 34提示:12 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法1十字相乘法例1 分解因式: (1)x23x2; (2)x24x12; (3); (4) 解:(1)如图121,将二次项x2分解成图中的两个x的积,再将常数项2分解成1与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是x23x2中的一次项,所以,有x23x2(x1)(x2)aybyxx图1242611图1231211图12212xx图121 说明:今后在分解与本例类似的二次三项式时,可以直接将图121中的两个x
20、用1来表示(如图122所示)(2)由图123,得x24x12(x2)(x6)(3)由图124,得11xy图125 (4)xy(xy)1(x1) (y+1) (如图125所示)2提取公因式法与分组分解法例2 分解因式: (1); (2)解: (1)= = 或 (2)= =或 = = =3关于x的二次三项式ax2+bx+c(a0)的因式分解若关于x的方程的两个实数根是、,则二次三项式就可分解为.例3把下列关于x的二次多项式分解因式:(1); (2)解: (1)令=0,则解得, = =(2)令=0,则解得, =练 习1选择题:多项式的一个因式为 ( )(A) (B) (C) (D)2分解因式:(1)
21、x26x8; (2)8a3b3;(3)x22x1; (4)习题121分解因式:(1) ; (2); (3); (4)2在实数范围内因式分解:(1) ; (2); (3); (4)3三边,满足,试判定的形状4分解因式:x2x(a2a)1.2分解因式1 B 2(1)(x2)(x4) (2)(3) (4)习题121(1) (2) (3) (4) 2(1);(2);(3); (4)3等边三角形42.1 一元二次方程根的判别式我们知道,对于一元二次方程ax2bxc0(a0),用配方法可以将其变形为 因为a0,所以,4a20于是(1)当b24ac0时,方程的右端是一个正数,因此,原方程有两个不相等的实数根
22、 x1,2;(2)当b24ac0时,方程的右端为零,因此,原方程有两个等的实数根 x1x2;(3)当b24ac0时,方程的右端是一个负数,而方程的左边一定大于或等于零,因此,原方程没有实数根由此可知,一元二次方程ax2bxc0(a0)的根的情况可以由b24ac来判定,我们把b24ac叫做一元二次方程ax2bxc0(a0)的根的判别式,通常用符号“”来表示综上所述,对于一元二次方程ax2bxc0(a0),有(1) 当0时,方程有两个不相等的实数根 x1,2;(2)当0时,方程有两个相等的实数根 x1x2;(3)当0时,方程没有实数根例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有
23、实数根,写出方程的实数根(1)x23x30; (2)x2ax10; (3) x2ax(a1)0; (4)x22xa0解:(1)324×1×330,方程没有实数根(2)该方程的根的判别式a24×1×(1)a240,所以方程一定有两个不等的实数根, (3)由于该方程的根的判别式为a24×1×(a1)a24a4(a2)2,所以,当a2时,0,所以方程有两个相等的实数根 x1x21;当a2时,0, 所以方程有两个不相等的实数根 x11,x2a1(3)由于该方程的根的判别式为224×1×a44a4(1a),所以当0,即4(1
24、a) 0,即a1时,方程有两个不相等的实数根 , ; 当0,即a1时,方程有两个相等的实数根 x1x21; 当0,即a1时,方程没有实数根说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题 根与系数的关系(韦达定理) 若一元二次方程ax2bxc0(a0)有两个实数根 ,则有 ; 所以,一元二次方程的根与系数之间存在下列关系: 如果ax2bxc0(a0)的两根分别是x1,x2,那么x1x2,x1·x2这
25、一关系也被称为韦达定理特别地,对于二次项系数为1的一元二次方程x2pxq0,若x1,x2是其两根,由韦达定理可知 x1x2p,x1·x2q,即 p(x1x2),qx1·x2,所以,方程x2pxq0可化为 x2(x1x2)xx1·x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1·x20因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2(x1x2)xx1·x20例2 已知方程的一个根是2,求它的另一个根及k的值分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值
26、,再由方程解出另一个根但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值解法一:2是方程的一个根,5×22k×260,k7所以,方程就为5x27x60,解得x12,x2所以,方程的另一个根为,k的值为7解法二:设方程的另一个根为x1,则 2x1,x1由 ()2,得 k7所以,方程的另一个根为,k的值为7例3 已知关于x的方程x22(m2)xm240有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值分析:本题可以利用韦达定理,由实数根的平方和比两
27、个根的积大21得到关于m的方程,从而解得m的值但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零解:设x1,x2是方程的两根,由韦达定理,得 x1x22(m2),x1·x2m24 x12x22x1·x221, (x1x2)23 x1·x221,即 2(m2)23(m24)21,化简,得 m216m170, 解得 m1,或m17当m1时,方程为x26x50,0,满足题意;当m17时,方程为x230x2930,3024×1×2930,不合题意,舍去综上,m17说明:(1)在本题的解题过程中,也可以先研究满足方程有两个
28、实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式是否大于或大于零因为,韦达定理成立的前提是一元二次方程有实数根例4 已知两个数的和为4,积为12,求这两个数分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数也可以利用韦达定理转化出一元二次方程来求解解法一:设这两个数分别是x,y,则 xy4, xy12 由,得 y4x, 代入,得x(4x)12,即 x24x120,x12,x26 或因此,这两个数是2和6解法二:由韦达定理可知,这两个数是方程 x24x
29、120的两个根 解这个方程,得 x12,x26所以,这两个数是2和6说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷例5 若x1和x2分别是一元二次方程2x25x30的两根(1)求| x1x2|的值; (2)求的值;(3)x13x23解:x1和x2分别是一元二次方程2x25x30的两根, ,(1)| x1x2|2x12+ x222 x1x2(x1x2)24 x1x2 6, | x1x2|(2)(3)x13x23(x1x2)( x12x1x2x22)(x1x2) ( x1x2) 23x1x2 ()×()23×()说明:一元二次方程的两根之差的
30、绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2分别是一元二次方程ax2bxc0(a0),则,| x1x2| 于是有下面的结论:若x1和x2分别是一元二次方程ax2bxc0(a0),则| x1x2|(其中b24ac)今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论例6 若关于x的一元二次方程x2xa40的一根大于零、另一根小于零,求实数a的取值范围解:设x1,x2是方程的两根,则 x1x2a40, 且(1)24(a4)0 由得 a4,由得 aa的取值范围是a4练 习1选择题:(1)方程的根的情况是 ( ) (A)有
31、一个实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)没有实数根(2)若关于x的方程mx2 (2m1)xm0有两个不相等的实数根,则实数m的取值范围是 ( ) (A)m (B)m (C)m,且m0 (D)m,且m0 2填空:(1)若方程x23x10的两根分别是x1和x2,则 (2)方程mx2x2m0(m0)的根的情况是 (3)以3和1为根的一元二次方程是 3已知,当k取何值时,方程kx2axb0有两个不相等的实数根?4已知方程x23x10的两根为x1和x2,求(x13)( x23)的值习题2.1A 组1选择题:(1)已知关于x的方程x2kx20的一个根是1,则它的另一个根是(
32、) (A)3 (B)3 (C)2 (D)2(2)下列四个说法: 方程x22x70的两根之和为2,两根之积为7;方程x22x70的两根之和为2,两根之积为7;方程3 x270的两根之和为0,两根之积为;方程3 x22x0的两根之和为2,两根之积为0其中正确说法的个数是 ( ) (A)1个 (B)2个 (C)3个 (D)4个(3)关于x的一元二次方程ax25xa2a0的一个根是0,则a的值是( )(A)0 (B)1 (C)1 (D)0,或12填空:(1)方程kx24x10的两根之和为2,则k (2)方程2x2x40的两根为,则22 (3)已知关于x的方程x2ax3a0的一个根是2,则它的另一个根是
33、 (4)方程2x22x10的两根为x1和x2,则| x1x2| 3试判定当m取何值时,关于x的一元二次方程m2x2(2m1) x10有两个不相等的实数根?有两个相等的实数根?没有实数根?4求一个一元二次方程,使它的两根分别是方程x27x10各根的相反数B 组1选择题:若关于x的方程x2(k21) xk10的两根互为相反数,则k的值为 ( ) (A)1,或1 (B)1 (C)1 (D)02填空:(1)若m,n是方程x22005x10的两个实数根,则m2nmn2mn的值等于 (2)如果a,b是方程x2x10的两个实数根,那么代数式a3a2bab2b3的值是 3已知关于x的方程x2kx20(1)求证
34、:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1x2)x1x2,求实数k的取值范围4一元二次方程ax2bxc0(a0)的两根为x1和x2求:(1)| x1x2|和;(2)x13x235关于x的方程x24xm0的两根为x1,x2满足| x1x2|2,求实数m的值C 组1选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x28x70的两根,则这个直角三角形的斜边长等于 ( ) (A) (B)3 (C)6 (D)9(2)若x1,x2是方程2x24x10的两个根,则的值为 ( ) (A)6 (B)4 (C)3 (D)(3)如果关于x的方程x22(1m)xm20有两实数根
35、,则的取值范围为 ( ) (A) (B) (C)1 (D)1 (4)已知a,b,c是ABC的三边长,那么方程cx2(ab)x0的根的情况是 ( ) (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)有两个异号实数根2填空:若方程x28xm0的两根为x1,x2,且3x12x218,则m 3 已知x1,x2是关于x的一元二次方程4kx24kxk10的两个实数根(1)是否存在实数k,使(2x1x2)( x12 x2)成立?若存在,求出k的值;若不存在,说明理由;(2)求使2的值为整数的实数k的整数值;(3)若k2,试求的值4已知关于x的方程(1)求证:无论m取什么实数时,这
36、个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|x1|2,求m的值及相应的x1,x25若关于x的方程x2xa0的一个大于1、零一根小于1,求实数a的取值范围2.1 一元二次方程练习1 (1)C (2)D 2 (1)3 (2)有两个不相等的实数根 (3)x22x303k4,且k041 提示:(x13)( x23)x1 x23(x1x2)9习题21A 组1 (1)C (2)B 提示:和是错的,对于,由于方程的根的判别式0,所以方程没有实数根;对于,其两根之和应为 (3)C 提示:当a0时,方程不是一元二次方程,不合题意2 (1)2 (2) (3)6 (3)3当m,且m0
37、时,方程有两个不相等的实数根;当m时,方程有两个相等的实数根;当m时,方程没有实数根4设已知方程的两根分别是x1和x2,则所求的方程的两根分别是x1和x2,x1x27,x1x21,(x1)(x2)7,(x1)×(x2)x1x21,所求的方程为y27y10B组1C 提示:由于k=1时,方程为x220,没有实数根,所以k12(1)2006 提示:mn2005,mn1,m2nmn2mnmn(mn1)1×(20051)2006 (2)3 提示;ab1,ab1,a3a2bab2b3a2(ab)b2(ab)(ab)( a2b2)(ab)( ab) 22ab(1)×(1)22&
38、#215;(1)33(1)(k)24×1×(2)k280,方程一定有两个不相等的实数根 (2)x1x2k,x1x22,2k2,即k14(1)| x1x2|,;(2)x13x235| x1x2|,m3把m3代入方程,0,满足题意,m3C组1(1)B (2)A (3)C 提示:由0,得m,2(1m)1 (4)B 提示:a,b,c是ABC的三边长,abc,(ab)2c202(1)12 提示:x1x28,3x12x22(x1x2)x12×8x118,x12,x26,mx1x2123(1)假设存在实数k,使(2x1x2)( x12 x2)成立一元二次方程4kx24kxk10
39、有两个实数根,k0,且16k216k(k+1)=16k0,k0x1x21,x1x2, (2x1x2)( x12 x2)2 x1251x22 x22 2(x1x2)29 x1x22, 即,解得k,与k0相矛盾,所以,不存在实数k,使(2x1x2)( x12 x2)成立(2)2 ,要使2的值为整数,只须k1能整除4而k为整数,k1只能取±1,±2,±4又k0,k11, k1只能取1,2,4,k2,3,5能使2的值为整数的实数k的整数值为2,3和5(3)当k2时,x1x21, x1x2, 2÷,得28,即, 4(1); (2)x1x20,x10,x20,或x1
40、0,x20 若x10,x20,则x2x12,x1x22,m22,m4此时,方程为x22x40, 若x10,x20,则x2x12,x1x22,m22,m0此时,方程为x220,x10,x225设方程的两根为x1,x2,则x1x21,x1x2a, 由一根大于1、另一根小于1,得 (x11)( x21)0, 即 x1x2(x1x2)+10, a(1)10,a2 此时,124×(2) 0, 实数a的取值范围是a222 二次函数 二次函数yax2bxc的图像和性质问题1 函数yax2与yx2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y2x2,yx2,y2x2的图象,通过这些函数
41、图象与函数yx2的图象之间的关系,推导出函数yax2与yx2的图象之间所存在的关系先画出函数yx2,y2x2的图象先列表:x3210123x294101492x2188202818从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了yx2y2x2图2.2-1xOy再描点、连线,就分别得到了函数yx2,y2x2的图象(如图21所示),从图21我们可以得到这两个函数图象之间的关系:函数y2x2的图象可以由函数yx2的图象各点的纵坐标变为原来的两倍得到同学们也可以用类似于上面的方法画出函数yx2,y2x2的图象,并研究这两个函数图象与函数yx2的图象之间的关系通过上面的研究,我们可以得到以下结论:二次函数yax2(a0)的图象可以由yx2的图象各点的纵坐标变为原来的a倍得到在二次函数yax2(a0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小问题2 函数ya(xh)2k与yax2的图象之间存在怎样的关系?图2.2-2xyO1y2x2y2(x1)2y2(x1)21同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系同学们可以作出函数y2(x1)21与y2x2的图象(如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压疮的护理与伤口愈合
- 外科护理微课比赛
- 【六升七暑假预习】七上英语单词默写每日一练含答案及解析
- 华师版九年级数学下册26.2.2 二次函数y=ax²+bx+c的图象和性质第1课时课件
- Unit4BodyLanguageUsingLanguage2高二英语人教版选择性
- 护理质量管理小组体会
- 社区康复护理与管理
- 肺炎克雷柏杆菌护理
- 绩效管理培训心得体会
- 品控部门工作职责
- 递进式流程通用模板PPT
- 关于高中生暑假学习计划表
- 脏腑用药规律1
- 房屋建造过程(优选经验)
- 魔方教学(课堂PPT)
- 化学工程与工艺专业课程设计-8000吨年氧化羰化制碳酸二甲酯合成工艺设计(含全套CAD图纸)
- 【签证在职收入证明模板】中英文版在职及收入证明(父母在职收入证明).doc
- 裸露土地绿网覆盖施工方案
- 数学画图坐标纸(可直接打印使用)2页
- 毕业设计(论文):关于绿色物流的发展现状与应对措施
- 有丝分裂课件.上课
评论
0/150
提交评论