小学数学新课程标准最新推荐_第1页
小学数学新课程标准最新推荐_第2页
小学数学新课程标准最新推荐_第3页
小学数学新课程标准最新推荐_第4页
小学数学新课程标准最新推荐_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.小学数学新课程标准最新推荐一、前言?全日制义务教育数学课程标准修改稿?以下简称?标准?是针对我国义务教育阶段的数学教育制定的。根据?义务教育法?、?根底教育课程改革纲要试行?的要求,?标准?以全面推进素质教育,培养学生的创新精神和理论才能为宗旨,明确数学课程的性质和地位,阐述数学课程的根本理念和设计思路,提出数学课程目的与内容标准,并对课程施行教学、评价、教材编写提出建议。?标准?提出的数学课程理念和目的对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些根本理念和目的。?标准?规定的课程目的和内容标准是义务教育阶段的每一个学生应当到达的根本要求。?标准?是

2、教材编写、教学、评估、和考试命题的根据。在施行过程中,应当遵照?标准?的要求,充分考虑学生开展和在学习过程中表现出的个性差异,因材施教。为使老师更好地理解和把握有关的目的和内容,以利于教学活动的设计和组织,?标准?提供了一些有针对性的案例,供老师在施行过程中参考。二、设计理念数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速开展,数学更加广泛应用于社会消费和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的根底,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会

3、每一个公民所必备的根本素养。数学教育作为促进学生全面开展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能义务教育阶段的数学课程具有公共根底的地位,要着眼于学生的整体素质的进步,促进学生全面、持续、和谐开展。课程设计要满足学生将来生活、工作和学习的需要,使学生掌握必需的数学根底知识和根本技能,开展学生抽象思维和推理才能,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到开展;要符合数学科学本身的特点、表达数学科学的精神本质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技

4、能的数学结果的同时,重视学生已有的经历,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。为此,制定了?标准?的根本理念与设计思路根本理念。一总:六大理念1、人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的开展2、数学是人们生活、劳动和学习必不可少的工具,数学是一切重大技术开展的根底,数学是一种文化。3、数学学习的内容要有利于学生主动地进展观察、实验、猜测、验证、推理、与交流,动手理论、自主探究与合作交流是学生学习数学的重要方式。4、学生是数学学习的主人,老师是数学学习的组织者、引导者、合作者。5、评价的目的理解学生的数学学习历程,改进老师的教

5、学;目的多元,方法多样;重过程,轻结果;关注情感态度。6、把现代信息技术作为学生学习数学和解决问题的强有力的工具。二分六大理念的解读:数学课程应致力于实现义务教育阶段的培养目的,表达根底性、普及性和开展性。义务教育阶段的数学课程要面向全体学生,适应学生个性开展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的开展。1、关于数学课程的功能1“人人学有价值的数学是指作为教育内容的数学,应当是合适学生在有限的学习时间里接触、理解和掌握的数学。怎样理解有价值的数学?有价值的数学应满足素质教育的要求;有价值的数学应有助于健全人格的开展;有价值的数学应对将来学生从事任何事业都有用。2“人

6、人都能获得必需的数学是指作为教育内容的数学,首先要满足学生将来社会生活的需要,这样的数学无论是出发点和归宿都要与学生息息相关的现实生活严密联络在一起。3每个学生都有丰富的知识和生活积累,每个学生都会有各自的思维方式和解决问题的策略。课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容要贴近学生的生活,有利于学生经历、考虑与探究。内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。2、关于数学的意义1数学教育的目

7、的不能仅限于“智力或思维才能的开展不能把智力价值看得过分重要。2作为教育内容的数学要作为一项人类活动来对待。3数学课程应从学生熟悉的现实生活开场和完毕。4数学课程应展示数学文化的魅力。要展示数学文化的悠久历史,要展示数学文化的博大精深,要展示数学家的探究精神,要展示数学文化的美学价值。数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是老师教与学生学的统一,学生是数学学习的主体,老师是数学学习的组织者与引导者。3、关于数学学习1数学课程的内容不仅要包括数学的一些现成结果,还要包括这些结果的形成过程。做数学表达过程、感觉数学发现的乐趣2数学学习的方式应当是一个充满生命力的过程:动手理论、

8、自主探究、合作交流。数学教学活动必须激发学生兴趣,调动学生积极性,引发学生考虑;要注重培养学生良好的学习习惯、掌握有效的学习方法。学生学习应当是一个生动活泼的、主动地和富有个性的过程,除承受学习外,动手理论、自主探究与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。老师教学应该以学生的认知开展程度和已有的经历为根底,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的时机。要处理好老师讲授和学生自主学习的关系,通过有效的措施,启发学生考虑,引导学生自主探究,鼓励学生合作交流,使学生真正理解和掌握根本的数学知识与技能、数

9、学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经历。4、关于数学教学活动1数学课程应当让学生感到亲切数学活动必须建立在学生认知开展程度和已有知识经历根底上。2数学教学活动就以学生的开展为本老师角色的新期待:优秀的节目主持人。3用教材:结合“境材周围的环境资源和“人材增删、重组、包装“教材,考虑“人材特点,摄取“境材组成“大教材。学习评价的主要目的是为了全面理解学生数学学习的过程和结果,鼓励学生的学习和改进老师的教学。应建立评价目的多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的程度,也要关注学生在数学活动中所表现出来的情感与态度,帮助学

10、生认识自我,建立信心。5、关于数学教学评价1把过程纳入评价的视野:过程评价和结果相结合、认知评价和情感态度评价相结合、注意评价内容的综合性、注意评价方式的多样性、注意评价对象的差异性、注意评价结果的鼓励性。2多元的评价目的和方法:观察法、档案袋法、三方协商考评法、学期及学年报告法。3数学教学评价的一个目的是改进教学。信息技术的开展对数学教育的价值、目的、内容以及教学方式产生了很大的影响。数学课程的设计与施行应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的有机结合。要充分考虑计算器、计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生提供丰富的学习资源,把现代信息技

11、术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探究性的数学活动中去。6、关于现代信息技术在数学教育中的作用1重视现代信息技术对人的观念的影响。2现代信息技术要致力于改变学生的学习方式。三、设计思路一关于学段为了表达义务教育数学课程的整体性,?标准?统筹考虑了九年的课程内容。同时,根据儿童开展的生理和心理特征,将九年的学习时间详细划分为三个学段:第一学段1-3年级、第二学段4-6年级、第三学段7-9年级。二关于目的?标准?提出义务教育阶段数学课程的总体目的和学段目的,并从知识技能、数学考虑、问题解决、情感态度等四个方面详细阐述。?标准?

12、用了“理解认识、理解、掌握、运用等认知目的动词表述知识技能目的的不同程度。根据“根本理念,数学学习必须注重过程,?标准?使用“经历感受、体验体会、探究等认知过程动词表述学习活动的不同程度。使用这些动词进展表述是为了更准确地刻画上述四个方面的详细目的。在?标准?中,这些动词的详细含义如下。理解认识:从详细事例中知道或举例说明对象的有关特征;根据对象的特征,从详细情景中识别或者举例说明对象。理解:描绘对象的特征和由来,阐述此对象与相关对象之间的区别和联络。掌握:在理解的根底上,把对象用于新的情境。运用:用已掌握的对象,选择或创造适当的方法。灵敏运用能综合运用知识,灵敏、合理地选择与运用有关的方法完

13、成特定的数学任务。经历感受:在特定的数学活动中,获得一些感性认识。经历感受在特定的数学活动中,获得一些初步的经历。体验体会:参与特定的数学活动,认识或验证对象的特征,获得经历。探究:独立或与别人合作参与特定的数学活动,发现对象的特征及其与相关对象的区别和联络,获得理性认识。探究主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联络。三关于学习内容在各个教学段中,?标准?安排了四个方面的内容:“数与代数,“图形与几何,“统计与概率,“综合与理论。1.数与代数“数与代数的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算

14、;方程、方程组、不等式、函数等。在“数与代数的教学中,应帮助学生建立数感和符号意识,开展运算才能,树立模型思想。数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感有助于学生理解现实生活中数的意义,理解或表述详细情景中的数量关系。符号意识原称符号感主要是指可以理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进展一般性的运算和推理。建立“符号意识有助于学生理解符号的使用是数学表达和进展数学考虑的重要形式。运算是“数与代数的重要内容,运算是基于法那么进展的,通常运算满足一定的运算律。学习这些内容有助于理解运算律,培养运算才能。模型也是“数与代数的

15、重要内容,方程、方程组、不等式、函数等都是根本的数学模型。从现实生活或者详细情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想。2.图形与几何“图形与几何主要内容有:空间和平面的根本图形,图形的性质和分类;平面图形根本性质的证明;图形的平移、旋转、轴对称、相似和投影;运用坐标描绘图形的位置和图形的运动。在“图形与几何的学习中,应帮助学生建立空间观念。空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描绘的实际物体;可以想

16、象出空间物体的方位和互相之间的位置关系;根据语言描绘或通过想象画出图形等。直观与推理是“图形与几何学习中的两个重要方面。几何直观是指利用图形描绘几何或者其他数学问题、探究解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观不仅在“图形与几何的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。推理是数学的根本思维方式,也是人们学习和生活中经常使用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。推力一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经历和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。演绎推理是从已有的事

17、实包括定义、公理、定理等出发,按照规定的法那么包括逻辑和运算验证结论,是由一般到特殊的过程。在解决问题的过程中,合情推力有助于探究解决问题的思路、发现结论;演绎推理用于验证结论的正确性。3.统计与概率“统计与概率主要内容有:搜集、整理和描绘数据,包括简单抽样、记录调查数据、描绘统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进展简单的判断。简单随机事件及其发生的概率。在“统计与概率中,帮助学生逐渐建立起数据分析的观念是重要的。数据分析包括:理解在现实生活中有许多问题应领先做调查研究、搜集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规

18、律的,一方面对于同样的事情每次搜集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;理解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择适宜的方法。在概率的学习中,所涉及的随机现象都基于简单事件:所有可能发生的结果是有限的、每个结果发生的可能性是一样的。“统计与概率的内容与现实生活联络亲密,必须结合详细案例组织教学。4.综合与理论“综合与理论是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经历的重要途径。针对问题情景,学生借助所学的知识和生活经历,独立考虑或与别人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学

19、与生活实际之间及其他学科的联络,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。这种类型的课程对于培养学生的抽象才能和逻辑思维才能、对于培养学生的创新意识和应用才能是有好处的,还有利于培养学生的合作精神。合理地设计课程内容以及教学方法是到达教学目的的关键,既要考虑学生的直接经历、可以启发学生考虑,也要考虑问题的数学本质、培养学生的数学素养。这种类型的课程对老师是一种挑战,老师应努力把握住问题的本质,可以引导学生考虑,同时,老师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。这种类型的课程应当贯彻“少而精的原那么,保证每学期至少一次。它可以在课堂上完

20、成,也可以将课内外相结合。四关于施行建议为了保证?标准?的顺利施行,?标准?分别对教学活动、学习评价,以及教材编写、课程资源的开发与利用等方面提出了施行建议;同时,为了更好地说明课程内容,?标准?在相关部分提供了一些案例。以上内容供有关人员参考、借鉴。总体目的通过义务教育阶段的数学学习,学生可以:1、获得适应社会生活和进一步开展所必须的数学的根本知识、根本技能、根本思想、根本活动经历。2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联络,运用数学的思维方式进展考虑,增强发现问题和提出问题的才能、分析问题和解决问题的才能。3、理解数学的价值,进步学习数学的兴趣,增强学好数学的信心,养成

21、良好的学习习惯,具有初步的创新意识和实事求是的科学态度。试验稿:获得适应将来社会生活和进一步开展所必需的重要数学知识包括数学事实、数学活动经历以及根本的数学思想方法和必要的应用技能;初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;体会数学与自然及人类社会的亲密联络,理解数学的价值,增进对数学的理解和学好数学的信心;具有初步的创新精神和理论才能,在情感态度和一般才能方面都能得到充分开展。“总体目的详细阐述如下:知识与技能知识与技能1、经历数与代数的抽象运算与建模等过程,掌握数与代数的根底知识和根本技能。2、经历图形的抽象、分类、性质讨论

22、、运动、位置确定等过程,掌握图形与几何的根底知识和根本技能。试验稿:经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的根底知识和根本技能,并能解决简单的问题.3、经历在实际问题中搜集和处理数据、利用数据分析问题、获得信息的过程,掌握统计与概率的根底知识和根本技能。4、参与综合理论活动,积累综合运用数学知识、技能和方法解决简单实际问题的数学活动经历。新增加数学考虑1、体会代数表示运算和几何直观等方面的作用,初步建立数感、符号意识和空间观念,开展形象思维和抽象思维。2、理解数据和随机现象,体会统计方法的意义,开展数据分析和随机观念。3、在参与观察、实验、猜测、证明、综合理论等数

23、学活动中,开展合情推理和演绎推理才能,明晰地表达自己的想法。4、学会独立考虑,体会数学的根本思想和思维方式。新增加试验稿:经历运用数学符号和图形描绘现实世界的过程,建立初步的数感和符号感,开展抽象思维。丰富对现实空间及图形的认识,建立初步的空间观念,开展形象思维。经历运用数据描绘信息、作出推断的过程,开展统计观念。经历观察、实验、猜测、证明等数学活动过程,开展合情推理才能和初步的演绎推理才能,能有条理地、明晰地阐述自己的观点。问题解决1、初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的数学问题,开展应用意识和理论才能。2、获得分析问题和解决问题的一些根本方法,体验解

24、决问题方法的多样性,开展创新意识。3、学会与别人合作、交流。4、初步形成评价与反思的意识。情感态度1、积极参与数学活动,对数学有好奇心和求知欲。2、体验获得成功的乐趣,锻炼抑制困难的意志,建立学好数学的自信心。3、理解数学的价值。试验稿:初步认识数学与人类生活的亲密联络及对人类历史开展的作用,体验数学活动充满着探究与创造,感受数学的严谨性以及数学结论确实定性.4、养成勇于质疑的习惯,形成实事求是的态度。总体目的的四个方面,不是互相独立和割裂的,而是一个亲密联络、互相交融的有机整体。课程组织和教学活动中,应同时兼顾四个方面的目的。这些目的的实现,使学生受到良好数学教育的标志,它对学生的全面、持续

25、、和谐开展,有着重要的意义。数学考虑、问题解决、情感态度的开展离不开知识技能的学习,知识技能的学习必须有利于其他三个目的的实现。学段目的第一学段1-3年级知识技能1、经历从日常生活中抽象出数的过程,理解常见的量;理解四那么运算的意义,掌握必要的运算技能。理解估算。2、经历从实际物体中抽象出简单几何体和平面图形的过程,理解一些简单几何体和常见的平面图形;感受平移、旋转、轴对称,认识物体的相对位置。掌握初步的测量、识图和画图的技能。3、经历数据的搜集和整理的过程,理解简单的数据处理方法。数学考虑1、可以理解身边有关数字的信息,会用数适宜的量纲描绘现实生活中的简单现象。开展数感。 2、再讨论简单物体

26、性质的过程中,开展空间观念。3、在老师的指导下,能对简单的调查数据归类。4、会考虑问题,能表达自己的想法;在讨论问题过程中,可以初步区分结论的共同点和不同点。问题解决1、能在老师的指导下,从日常生活中发现和提出简单的数学问题。2、获得分析问题和解决问题的一些根本方法,知道同一问题可以有不同的解决方法。3、体验与别人合作交流、解决问题的过程。4、初步学会整理解决问题的过程和结果。情感态度1、对身边与数学有关的事务现象有好奇心,可以参与数学活动。2、在别人帮助下,体验抑制数学活动中的困难的过程。3、理解数学可以描绘生活中的一些现象,感受数学与生活有亲密联络。4、在解决问题的过程中,养成询问“为什么

27、的习惯。第二学段4-6年级知识技能1、体验从详细情境中抽象出数的过程;理解分数、百分数的意义,理解负数,掌握必要的运算技能;理解估算的意义;掌握用方程表示简单的数量关系、解简单方程的方法。2、探究一些图形的形状、大小和位置关系,理解一些几何体和平面图形的根本特征;体验图形的简单运动,理解确定物体位置的方法,掌握测量、识图和画图的根本方法。3、经历数据的搜集、整理和分析的过程,掌握一些简单的数据处理技能;体验事件发生的等可能性,掌握简单的计算等可能性的方法。数学考虑1、可以对生活中的数字信息作出合理的解释,会用数适宜的量纲、字母和图表描绘生活中的简单问题;初步形成数感,开展符号意识。2、在探究简

28、单图形的性质、运动现象的过程中,初步形成空间观念。3、能根据解决问题的需要,搜集与表示数据,归纳出有用的信息。4、能进展有条理的考虑,能清楚地表达考虑的过程与结果;在与别人交流过程中,可以进展简单的辩论。问题解决1、能从社会生活中发现并提出简单的数学问题。2、能探究分析问题、解决问题的有效方法,理解解决问题方法的多样性。3、能借助于数字计算器解决简单的计算问题。4、初步学会与别人合作解决问题,尝试解释自己的考虑过程。5、能初步判断结果的合理性,经历回忆与分析解决问题过程的活动。情感态度1、愿意理解社会生活中与数学相关的信息,主动参与数学学习活动。2、在别人的鼓励和引导下,尝试抑制数学活动中遇到

29、的困难,相信自己可以学好数学。3、在运用数学解决问题的过程中,体验数学的价值。4、初步养成乐于考虑、实事求是、勇于质疑等良好品质。变 化数与代数数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,?标准?对此作了较大地改革:1重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用。通过探究丰富的问题情景开展运算的含义,在保持根本笔算训练的前提下,强调可以根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化。2对于应用问题:选材强调现实性、兴趣性和可探究性;题材呈现形式多样化表格、图形、漫画、对话、文字等;强调对信息材料的选择与判断信息多余、

30、信息缺乏;解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析。3使学生初步体会数学可以发现、描绘、分析客观世界中多种多样的形式,把握事物的变化和事物间的关系;初步开展学生的符号意识,学会用符号表达现实问题中的一些根本关系,会初步进展符号运算。4体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好开展规律,预测事物开展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法。第一学段1增加“能进展简单的四那么混合运算两步。2适当加强根底。3加强综合才能的培养。第二学段1增加“结合现

31、实情景感受大数的意义,并进展估算;开展学生的数感;加强与现实的联络。2增加了“理解公倍数和最小公倍数,理解公因数和最大公因数。3删除“会口算百以内一位数乘、除两位数?老师讨论4将“理解等式的性质,会用等式的性质解简单的方程改为“能理解简单的方程。图形与几何原称空间与图形:变“空间与图形为“图形与几何;重提几何直观、推理才能、运算才能、逻辑思维才能,用词更加标准,表达了课标的严肃现行大纲这部分内容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联络起来,也没有表达现代几何的开展,还往往造成不少学生因此对

32、几何、至整个数学学习失去了兴趣和信心。为此,?标准?在重新审视几何教学目的的根底上,提出几何学习最重要的目的是使学生更好地理解自己所生存的世界,形成空间观念。并对传统的几何内容进展了较大幅度的改革:1设置了“空间与图形领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开场使学生接触丰富的几何世界。2通过观察、描绘、制作、从不同的角度观察物体、认识方向、制作模型等活动,开展学生的空间观念和和图形设计与推理的才能。3突出用观察、操作、变换、坐标、推理等多方式理解现实空间和处理几何问题,体会更多的刻划现实生活中的应用。?标准?中还指出,逻辑证明的要求并不局限于几何内

33、容,而应该表达在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的根本方法等等。因此,?标准?中在强调探究图形性质的根底之上,要求证明根本图形三角形、四边形的根本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握根本的证明方法,同时,向学生介绍欧几里得和?几何本来?,使学生体会它们对于人类历史和思想开展中的重要作用。综上

34、所述,?标准?大大地加强和改善了目前的几何教学。标准的图形与几何第一学段仍分为四部分,详细表示有所变动,1图形的认识,2测量,3图形的运动,4图形与位置,在探究、发现、确认、证明图形性质过程中,表达两种推理合情推理与演绎推理相辅相成的关系。表达增强学生“发现和提出问题、分析和解决问题的才能要求。“图形的运动强调了图形的运动是研究图形性质的一种有效方法。运动也是一种根本的数学思想。第一学段1将能在方格纸上画出简单图形沿程度方向、垂直方向平移后的图形放在第二学段.2将能在方格纸上画出简单图形的轴对称图形放在第二学段.第二学段1删除“两点确定一条直线和“两条直线确定一个点2增加“通过操作,理解圆的周

35、长与直径的比为定值。统计与概率现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义公式例题习题的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联络,统计与概率对决策的作用。因此,?标准?中大大增加了“统计与概率的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,表达了统计与概率的根本思想:1、反映数据统计的全过程:搜集和整理数据、表示数据、分析数据、作出决策、进展交流。2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段。3、根据数据作出推理和合理的论证,并初步学会用概率统计语

36、言进展交流。统计鼓励学生运用自己的方式呈现整理数据的结果。第一学段不要求学生学习“正规的统计图一格代表一个单位的条形统计图以及平均数放在第二学段。这种变化有三个原因: 更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据。 早期经历的多样化可以为以后学习:“正规的统计图表和统计量奠定比较结实的根底。 使得统计内容在第一、二学段的要求层次更加明确。 加强分析图表的才能里的培养。提升“读图才能的培养。 加强调查等活动的体验。主要是小调查在搜集数据方法方面,考虑到学生年龄特征,要求学生理解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去搜集资料。 第二学段与?标准?相比,在统计方面

37、,只要求学生体会平均数的意义,不要求学生学习中位数、众数这些内容放在第三学段平均数易受极端数的影响最大数与最小数的影响。 另外,删去“体会数据可能产生的误导这一要求。概率可能性,重视“随机现象在第一学段,去掉了标准对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描绘.综合与理论“综合与理论是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经历,培养学生应用意识与创新意识的重要途径.针对问题的情景,学生综合所学的知识,和生活经历,独立考虑或与别人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间数学与生活实际之间

38、数学与其他学科之间的联络,加深对所教数学内容的理解.?标准?增设“联络与综合部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经历、现实社会和其他学科的联络,以及数学在人类文明开展与进步过程中的作用;体会数学知识内在的联络。同时,采用过“综合理论活动这种新的学习形式,通过学生的自主探究与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探究数学规律的才能,逐步开展对数学的整体认识。新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了宏大影响。因此,?标准?提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具。这样可以免除学生做大量繁杂、重复的运算,从而在探究性、创造性的数学活动中投入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论