数学建模-垃圾分类处理_第1页
数学建模-垃圾分类处理_第2页
数学建模-垃圾分类处理_第3页
数学建模-垃圾分类处理_第4页
数学建模-垃圾分类处理_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上数学建模 垃圾分类处理 陈云中1 问题的重述在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。2) 可回收垃圾将收集后分类再利用。3) 有害垃圾,运送到固废处理中心集中处理。 4)其他不可回收垃圾将运送到填埋场或焚烧场处理。所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。 1) 假定现有垃

2、圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。以期达到最佳经济效益和环保效果。2) 假设转运站允许重新设计,请为问题1)的目标重新设计。2 基本假设(1)假设各小区清运站每天的垃圾量是不变的;(2)假设各小区清运站的垃圾都必须在当天清理完毕;(3)不考虑运输车在行驶过程中出现的塞车、抛锚等耽误时间的情况;(4)不允许运输车有超载现象;(5)每个小区清运站均位于街道旁,保证运输车行驶顺畅;(6)城区人口分为不同部分,每部分人口固定,每天产生垃圾量固定;(7)一天只从小区清运站收一次垃圾(晚上或下午);(8)所有运输车均从垃

3、圾转运站发车最后回到垃圾转运站;(9)运输车将垃圾一起送往大型设备处和小型设备处再前往坟埋场和焚烧场;(10)大型垃圾处理厂的寿命是30年。小型垃圾处理机的寿命是10年; (11) 建设在运输垃圾过程中没有新垃圾入站。3 符号(参数)说明(1) (=1,2,,)为第j个解释变量;(2) (=1,2,,) 为第j个未知参数;(3) 为随机误差项;(4) S为多元线性回归模型的精度;(5) Pi(xi,yi)为第i个转运站的坐标;(6) Pj(Xj,Yj)为大型厨余垃圾处理设备建在地图上的坐标;(7) cost1为大型垃圾处理设备每日垃圾处理费用;(8) Cost2为小型垃圾处理设备每日垃圾处理费

4、用;(9)|A| 表示A点到原点的距离,恒正(10)|B| 表示B点到原点的距离,恒正(11)|A-B| 表示A,B两点之间的距离,恒正(12)Ta 表示A点所在地的垃圾量(13)Tb 表示A点所在地的垃圾量(14)cost:耗油量; (15) T为规划使用年限; (16) Cik为第i座收集站运往第k座中转站单位运输量单位距离的费用(元·t- 1·km- 1 ) ; (17) Xik为第i座收集站运往第k 座中转站的日运输垃圾量( t·d- 1 ) ;(18) Lik为第i座收集站运往第k座中转站运输距离(km) ;(19) Dk j为第k座中站运往第j座处理场

5、单位运输量单位距离的费用(元·t- 1 ·km- 1 ) ; (20) Yk j为第k座中转站运往第j座处理场日运输垃圾量( t·d- 1 ) ; (21) Sk j为第k座中转站运往第j座处理场运输距离(km);(22) Fk 为规划期内待建中转站的固定投资(元) ; (23) E为中转站的运行成本(元·t- 1 ) ; (24) Qmin为中转站建设的最小控制规模( t·d- 1 ) ; (25) Qmax为中转站建设的最大控制规模( t·d- 1);. 5 模型的构建与求解5.1问题一的建模与求解5.1.1城市生活垃圾产生量的预

6、测表一 城镇垃圾产生量历年统计表(万吨)年份20012002200320042005垃圾量281.8284.7290.4296302年份20062007200820092010垃圾量321361.4357383.29413 假定被解释变量,与多个解释变量,,。之间具有线性关系,即 (8)其中 (=1,2,,)为k个解释变量,(=1,2,,) 为+1个未知参数,为随机误差项。被解释变量Y的期望值与解释变量,,的线性方程为: (9)对于n组观测值, (=1,2, ,n),其方程组形式为: (10)即 其矩阵形式为 即 Y=X+ (11) 其中为被解释变量的观测值向量;=为被解释变量的观测值矩阵;为

7、总体回归参数向量;为随机误差向量。总体回归方程为: E(Y)=X (12) 可采用最小二乘法对上式中的待估回归系数进行估计,求得值后,即可利用多元线性回归模型进行预测了。我们对多元线性回归分析进行数学检验,包括回归方程和回归系数的显著性检验。a. 回归方程的显著性检验,采用统计量: (13) 式中;为回归平方和,其自由度为m;为剩余平方和,其自由度为(n-m-1)。利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平,在F分布表中查出自由度为m和(n一m一1)的值,如果,则说明与的线性相关密切;反之,则说明两者线性关系不密切。b回归系数的显著性检验,采用统计量: (14)式中,为相关矩

8、阵的对角线上的元素。对于给定的置信水平,查分布表得,若计算值,则拒绝原假设,即认为是重要变量,反之,则认为,变量可以剔除。多元线性回归模型的精度,可以利用剩余标准差 (15)来衡量。越小,则用回归方程预测越精确;反之亦然。采用matlab软件编程进行城市生活垃圾量多元线性回归模型预测(预测代码见附录1)。表二为训练结束后预测值与统计值的对比表,精度达到要求后用训练好的模型来预测深圳市2011-2015年城市生活垃圾产生量,预测结果见表311。在matlab软件中运行代码后得到生活垃圾产生量的回归方程为:Y=387965+025178xXl+010508xx200574xx3+O1292xx4-

9、00138xx5+208016xx6-00095xx7+00066xxs一31460xx9方差估计:S=257642回归方程的显著性检验F统计量,F=723187,所以拒绝假设,即回归模型成立。 表二线性回归模型预测值与统计值对比表年份20012002200320042005预测值280.12288.24291.97300.89308.02统计值281.80284.70290.40296.00302.00年份20062007200820092010预测值314.79359.58358.08390.34411.29统计值321.00361.40357.00383.29413 图一 线性回归模型预

10、测值与统计值对比分析图 从表二及图一可以看出,多元线性回归模型对历史值的拟合程度较高,预测精度是可以接受的,多元线性回归模型预测值比较接近深圳市城市生活垃圾实际产生量,稍微偏高。 表三 2011-2015年深圳市城市生活垃圾产生量多元线性回归模型预测值年份20112012201320142015预测值(万吨) 397.3 413.0 429.0 445.3 461.85.1.2 大小型厨余垃圾设备规划5.1.2.1模型的建立题目要求给出大、小型设备(橱余垃圾)的分布设计。由于大型厨余垃圾处理设备处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。而每个转运站的垃圾数量有限,

11、所以大型厨余垃圾处理设备必须在图上重新选址建设。小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。所以小型垃圾处理机可以设置在垃圾中转站内。根据表四用matlab6.5编程作图二(程序见附录三)表四中转站坐标名称中转站厨余垃圾量Xy名称中转站厨余垃圾量xyP1站1109.8622.18P19站19164.8912.06P2站2108.0421.69P20站20257.5511.96P3站388.3420.92P21站21205.8611.43P4站43012.4420.39P22站22359.8811.38P5站556.9719.8P23站233

12、011.7711.67P6站6516.0817.77P24站24305.4310.85P7站71014.3317.48P25站25205.7610.17P8站81014.3417.24P26站26158.1810.65P9站92010.917.43P27站273011.0810.22P10站102510.6416.51P28站28155.529.39P11站11209.8816.37P29站29208.769.15P12站12404.8912.08P30站30155.768.96P13站13159.215.06P31站31254.58.23P14站142010.8513.9P32站32307.

13、365.28P15站1556.1514.43P33站33159.116.85P16站161512.3513.66P34站34307.074.6P17站17257.9213.12P35站357014.5311.09P18站18107.8913.12P36站36156.638.72P37站37256.259.73P38站38403.394.94图二中转站坐标图从图表可知每个垃圾转运站的坐标Pi(xi,yi),假设大型厨余垃圾处理设备建在地图上的Pj(Xj,Yj)。所以对于每个垃圾中转站来说有两种情况:(1)在站内设置垃圾处理机。(2)把垃圾运往大型厨余垃圾处理厂进行处理。从中选择最优方案,从而确定

14、垃圾大型垃圾处理站的位置。假设大型垃圾处理厂的寿命是30年。小型垃圾处理机的寿命是10年。大型垃圾处理设备的平均每吨耗损成本=/(30*365*200)=20元/吨小型垃圾处理设备的平均每吨耗损成本=/(10*365*0.3)=256元/吨2.5吨汽车,每车耗油20L35L 70#汽油/百公里。每升70#汽油价格为7.2元司机月薪平均3500元。如果运往大型垃圾处理设备厂,则每日垃圾处理费用(cost1)=平均每日设备耗损成本+运输费用+司机工资+垃圾处理费用。如果在垃圾转运站设置小型垃圾处理机,则每日垃圾处理费用(cost2)=平均每日设备耗损成本+垃圾处理费用。要确定大型垃圾处理厂的位置,

15、需要计算出选择第1种方案的点。根据以上条件建立模型:Cost1=Cost2=Cost1<=Cost2求解Pj(Xj,Yj)的范围。其中s(i)为第i个垃圾站的每日厨余垃圾量。5.1.3 清运方案设计5.1.3.1 模型的建立垃圾运输问题最终可以归结为最优路径搜索问题,用计算模拟搜索,可以搜寻到令人满意的可行解。先注意到两点的情况,设两点分别为A(x1,y1),B(x2,y2)。主要有以下两种情况:1 A,B明显有先后次序。-递减状态(如图二) 图二 不妨设x1>x2, y1>y2,不难看出A在B的后方,即A比B远。对于前方参考点O,要将A,B对应垃圾点的垃圾全部取回再返回O,

16、一共有三种方式:1O->A->O, O->B->O单独运输。这种情况下,总的路程消费等于空载运行费用(20L/百公里)与装载时运行费用(20+6*Ta)L/百公里)的总和。于是有:Cost = 20*|A| + (20+6*Ta)*|A| + 20*|B| + (20+6*Ta)*|B|2. O->A->B->O先远点再近点,即先空载至最远处,装完A点垃圾后再返回至B,再回O点,有: Cost = 20*|A| + (20+6*Ta)*|A-B| +(20+6*(Ta+Tb))*|B| = 20*|A| + 1.8*|A|*Ta + 1.8*|B|*T

17、b3. O->B->A->O先近点在远点,即先装B点垃圾,然后载着B点的垃圾奔至A点,再回O点,有: Cost= 20*|B| + (20+6*Tb)*|A-B| + (20+6*(Ta+Tb))*|A| =20*|B| + (20+6*Ta)*|A| +(20+6*Tb)*|B| + (20+6*Tb)*|A-B|*2 比较以上三种情况,远近点的遍历顺序,可以看出,“先远后近”绝对比“先近后远在花费钱的数量上要少的多,省出(20+6*Tb)*|A-B|*2 这部分的钱主要是车载着B点的垃圾奔到A点再返回B点。而又注意到两者的时间花费是相等的。所以在其余同等的情况下选择“先远

18、后近”。考虑单独运输比其余的两种运输花费的钱仍不比“先远后近”省,还多了20*|B|,所以一般情况下,不采用单独运输。2 A,B两点没有明显先后顺序。 -并邻状态(如图三) 图三还是一共有三种情况: 1O->A->O, O->B->O单独运输。这种情况下,跟A,B两点有先后顺序中的情况完全相同,即有:Cost = 20*|A| + (20+6*Ta)*|A| + 20*|B| + (20+6*Ta)*|B|2O->A->B->OCost = 20*|A| + (20+6*Ta)*|A-B| + (20+6*(Ta+Tb)*|B| -13.O->B

19、->A->OCost = 20*|B| +(20+6*Tb)*|A-B|+(20+6*(Ta+Tb)*|A| -2相比之下,清晰可见并邻状态下的单独运输所花的费用最少,所以在不要求时间的情况下对于并邻两点,采用单独运输的方式最节约钱。用<1>式与<2>式相减, 得到如下判断式:6*(Ta-Tb) *|A-B| +6*(Ta+Tb)*(|B|-|A|)-<3>上式 < 0时, 选 0->A->B->O;上式 > 0时, 选 O->B->A->O;上式 = 0时, 任意选上述两路线。三两点选择趋势的讨论

20、。 (如图四) 图四由图中看到B,C两点没有明显的先后顺序,属于并邻点。因为当运输车载重行驶时费用会成倍的增长,比其空载时所花费用要大的多,所以排除A->B->C或A->C->B这样的一次经过3点的往返路线,仅选择B,C中的某一点与A完成此次运输,将另一点留到下次。那么A点选择B还是C呢?不妨假设|B|>|C|,即B点离原点的距离比C点的更远,因为A在B,C之后,所以也就是B点离A点更近。这样,此次的运输我们更趋向于选择A->B,因为就这三点而论,A无论是选B还是C,三点的垃圾总要运完,所以花费的钱是一样的。但选择A->B后,下次运输车运C点垃圾时就无

21、需跑的更远。综上所述,得出搜索的基本原则:1在两点递减的情况下,不采用单独运输;2在其余同等的情况下选择“先远后近”;3不要求时间的情况下对于并邻两点,采用单独运输的方式最节约 钱;一般情况下用式<3作判断;4车在装的足够多的情况下应该直接返回中转站;5每一次布局和每条线路的搜索不妨由剩下未搜点中的最大值开始四 关于垃圾点的垃圾是否一次清除的讨论这里说的一次清除问题不是指一天,而是指当一辆运输车已经装载了足够多的垃圾,不能完全清理下一个垃圾点的时候,车在下一个站点“停还是不停”的问题。例如,一辆运输车选择了某段路线后,当清运完前几个点后,未达到饱和,但下一个点的垃圾量又装不完,那么此车是直接返回呢,还是继续装直至车装满为止呢?我们判断前者更好,就是车在装的足够多的情况下应该直接返回原点。这是因为对于下一垃圾点(假设为A点)内的垃圾而言,无论是一次装完还是分两次装完,将它们运回所花费用是恒定的。整体而言,两者花费的钱是相等的,但分两次装要多花装车时间,所以选择前者。5.1.3.2模型的求解首先根据题所给的数据画出散点图 图五求得总耗油为x,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论