太阳能光伏电池论文中英文资料对照外文翻译文献综述_第1页
太阳能光伏电池论文中英文资料对照外文翻译文献综述_第2页
太阳能光伏电池论文中英文资料对照外文翻译文献综述_第3页
太阳能光伏电池论文中英文资料对照外文翻译文献综述_第4页
太阳能光伏电池论文中英文资料对照外文翻译文献综述_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-光伏系统中蓄电池的充电保护IC电路设计1.引言太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开场普及,太阳能照明也已经在我国很多城市开场投入使用。作为太阳能照明的一个关键局部,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不连续供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达1216年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充

2、电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。2.系统设计与考虑 系统主要包括两大局部:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且

3、减少珍贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因素有充电速率、放电速率和浮充电压。*些厂家称如果有过充保护电路,充电率可以到达甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20C/3。电池的电压与温度有关,温度每升高1,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/。普通充电器在25处为最正确工作状态;在环境温度为0时充电缺乏;在45时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现

4、对蓄电池进展保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽一样,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进展检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池

5、的保护。3.单元模块设计3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为2030 mA,可直接驱动外部串联的调整管,从而调整充电器的输出电压与电流。电压和电流检测比较器检测蓄电池的充电状态,并控制状态逻辑电路的输入信号。当电池电压或电流过低时,充电启动比较器控制充电。电器进入涓流充电状态,当驱动器截止时,该比较器还能输出20 mA左右,进入涓流充电电流。这样,当电池短路或反接时,充电器只能以小电流充电,防止了因充电电

6、流过大而损坏电池。此模块构成的充电电路充电过程分为二个充电状态:大电流恒流充电状态、高电压过充电状态和低电压恒压浮充状态。充电过程从大电流恒流充电状态开场,在这种状态下充电器输出恒定的充电电流。同时充电器连续监控电池组的两端电压,当电池电压到达转换电压过充转换电压Vsam时,电池的电量己恢复到放出容量的70%90%,充电器转入过充电状态。在此状态下,充电器输出电压升高到过充电压Voc,由于充电器输出电压保持恒定不变,所以充电电流连续下降。当电流下降到过充中止电流Ioct时,电池的容量己到达额定容量的100%,充电器输出电压下降到较低的浮充电压VF。3.2保护模块 芯片部保护电路模块框图如图3所

7、示。该电路包括控制逻辑电路、取样电路、过充电检测电路、过放电检测比较器、过电流检测比较器、负载短路检测电路、电平转换电路和基准电路(BGR)。 此模块构成的保护电路如图4所示。当芯片的供电电压在正常工作围,且VM管脚处的电压在过电流I检测电压之下,则此时电池处于通常工作状态,芯片的充放电控制端CO和DO均为高电平,这时芯片处于通常工作模式。而当电池放电电流变大,会引起VM管脚处的电压上升,假设VM管脚处的电压在过电流检测电压Viov之上,则此时电池处于过电流状态,如果这种状态保持相应的过电流延时时间tiov,芯片制止电池放电,这时充电控制端CO为高电平,而放电控制端DO为低电平,芯片处于过电流

8、模式,一般为了对电池起到更加平安合理的保护,芯片会对电池的不同过放电电流采取不同的过放电电流延时时间保护。一般规律是过放电电流越大,则过放电电流延时时间越短。当芯片的供电电压在过充电检测电压之上Vdd>Vcu时,则电池处于过充电状态,如果这种状态保持相应的过充电延时时间tcu芯片将制止电池充电,此时放电控制端DO为高电平,而充电控制端CO为低电平,芯片处于过充电模式。当芯片的供电电压在过放电检测电压之下(Vdd<Vdl),则此时电池处于过放电状态,如果这种状态保持相应的过放电延时时间tdl,芯片将制止电池放电,此时充电控制端CO为高电平,而放电控制端DO为低电平,芯片处于过放电模式

9、。4.电路设计 由两个充电与保护模块构造图可将电路分为四局部:电源检测电路(欠压检测电路)、偏置电路(取样电路、基准电路以及偏置电路)、比较器局部(包括过充电检测比较器/过放电检测比较器、过流检测比较器和负载短路检测电路)及逻辑控制局部。 文中主要介绍欠压检测电路设计(图5) ,并给出带隙基准电路(图6) 。 蓄电池的充电、电压的稳定尤为重要,欠压、过压保护是必不可少的,因此通过在芯片部集成过压、欠压保护电路来提高电源的可靠性和平安性。并且保护电路的设计要简单、实用,此处设计了一种CMOS工艺下的欠压保护电路,此电路构造简单,工艺实现容易,可用做高压或功率集成电路等的电源保护电路。 欠压保护的

10、电路原理图如图5所示,共由五局部组成:偏置电路、基准电压、分压电路、差分放大器、输出电路。本电路的电源电压是10V;M0,M1,M2,R0是电路的偏置局部,给后级电路提供偏置,电阻Ro决定了电路的工作点,M0,M1,M2组成电流镜;R1,M14是欠压信号的反响回路;其余M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14组成四级放大比较器;M15,DO产生基准电压,输入比较器的同相端,固定不变V,分压电阻R1,R2,R3输入到比较器的反相端,当电源电压正常工作时,反相端的欠压检测输给比较器的反相端的电压大于V+。比较器输出为低,M14截止,反响电路不起作用;当欠压发

11、生时,分压电阻R1,R2,R3反响比较敏感,当电阻分压后输给反相端的电压小于V,比较器的输出电压为高,此信号将M14开启,使得R两端的电压变为M两端的饱和电压,趋近于0V,从而进一步拉低了R1>R2分压后的输出电压,形成了欠压的正反响。输出为高,欠压锁定,起到了保护作用。5.仿真模拟结果与分析 本设计电路采用CSMC 0.6 m数字CMOS工艺对电路进展仿真分析。在对电路做整体仿真时,主要观察的是保护模块对电池的充放电过程是否通过监测Vdd电位和Vm电位而使芯片的CO端和DO端发生相应的变化。图7所示的整体仿真波形图是保护模块随着电池电压的变化从通常工作模式转换到过充电模式,然后回到通常

12、工作模式,接着进入过放电模式,最后再回到通常工作模式。由于本设计处于前期阶段,各个参数还需要优化,只是提供初步的仿真结果。6.结论设计了一种集蓄电池充电与保护功能于一身的IC。利用此设计既可以减小而积,又可以减少外围电路元器件。电路同时采用了低功耗设计。由于此工程正在进展设计优化阶段,完整的仿真还不能到达要求,还需要对各个模块电路进展优化设计。英语原文Design of a Lead-Acid Battery Charging and Protecting IC in Photovoltaic System1.IntroductionSolar energy as an ine*haustib

13、le, ine*haustible source of energy more and more attention. Solar power has bee popular in many countries and regions, solar lighting has also been put into use in many cities in China. As a key part of the solar lighting, battery charging and protection is particularly important. Sealed maintenance

14、-free lead-acid battery has a sealed, leak-free, pollution-free, maintenance-free, low-cost, reliable power supply during the entire life of the battery voltage is stable and no maintenance, the need for uninterrupted for the various types of has wide application in power electronic equipment, and p

15、ortable instrumentation. Appropriate float voltage, in normal use (to prevent over-discharge, overcharge, over-current), maintenance-free lead-acid battery float life of up to 12 16 years float voltage deviation of 5% shorten the life of 1/2. Thus, the charge has a major impact on this type of batte

16、ry life. Photovoltaic, battery does not need regular maintenance, the correct charge and reasonable protection, can effectively e*tend battery life. Charging and protection IC is the separation of the occupied area and the peripheral circuit ple*ity. Currently, the market has not yet real, charged w

17、ith the protection function is integrated on a single chip. For this problem, design a set of battery charging and protection functions in one IC is very necessary.2.System design and considerations The system mainly includes two parts: the battery charger module and the protection module. Of great

18、significance for the battery as standby power use of the occasion, It can ensure that the e*ternal power supply to the battery-powered, but also in the battery overcharge, over-current and an e*ternal power supply is disconnected the battery is to put the state to provide protection, the charge and

19、protection rolled into one to make the circuit to simplify and reduce valuable product waste of resources. Figure 1 is a specific application of this Ic in the photovoltaic power generation system, but also the source of this design. Maintenance-free lead-acid battery life is usually the cycle life

20、and float life factors affecting the life of the battery charge rate, discharge rate, and float voltage. Some manufacturers said that if the overcharge protection circuit, the charging rate can be achieved even more than 2C (C is the rated capacity of the battery), battery manufacturers remend charg

21、ing rate of C/20 C/3. Battery voltage and temperature, the temperature is increased by 1 °C, single cell battery voltage drops 4 mV, negative temperature coefficient of -4 mV / ° C means that the battery float voltage. Ordinary charger for the best working condition at 25 °C; charge l

22、ess than the ambient temperature of 0 °C; at 45 °C may shorten the battery life due to severe overcharge. To make the battery to e*tend the working life, have a certain understanding and analysis of the working status of the battery, in order to achieve the purpose of protection of the bat

23、tery. Battery, there are four states: normal state, over-current state over the state of charge, over discharge state. However, due to the impact of the different discharge current over-capacity and lifetime of the battery is not the same, so the battery over discharge current detection should be tr

24、eated separately. When the battery is charging the state a long time, would severely reduce the capacity of the battery and shorten battery life. When the battery is the time of discharge status e*ceeds the allotted time, the battery, the battery voltage is too low may not be able to recharge, makin

25、g the battery life is lower. Based on the above, the charge on the life of maintenance-free lead-acid batteries have a significant impact, while the battery is always in good working condition, battery protection circuit must be able to detect the normal working condition of the battery and make the

26、 action the battery can never normal working state back to normal operation, in order to achieve the protection of the battery.3.Units modular design3.1The charging module Chip, charging module block diagram shown in Figure 2. The circuitry includes current limiting, current sensing parator, referen

27、ce voltage source, under-voltage detection circuit, voltage sampling circuit and logic control circuit. The module contains a stand-alone limiting amplifier and voltage control circuit, it can control off-chip drive, 20 30 mA, provided by the drive output current can directly drive an e*ternal serie

28、s of adjustment tube, so as to adjust the charger output voltage and current . Voltage and current detection parator detects the battery charge status, and control the state of the input signal of the logic circuit. When the battery voltage or current is too low, the charge to start the parator cont

29、rol the charging. Appliances into the trickle charge state when the cut-off of the drive, the parator can output about 20 mA into the trickle charge current. Thus, when the battery short-circuit or reverse, the charger can only charge a small current, to avoid damage to the battery charging current

30、is too large. This module constitutes a charging circuit charging process is divided into two charging status: high-current constant-current charge state, high-voltage charge status and low-voltage constant voltage floating state. The charging process from the constant current charging status, the c

31、onstant charging current of the charger output in this state. And the charger continuously monitors the voltage across the battery pack, the battery power has been restored to 70% to 90% of the released capacity when the battery voltage reaches the switching voltage to charge conversion voltage Vsam

32、 charger moves to the state of charge. In this state, the charger output voltage is increased to overcharge pressure Voc is due to the charger output voltage remains constant, so the charging current is a continuous decline. Current down to charge and suspend the current Ioct, the battery capacity h

33、as reached 100% of rated capacity, the charger output voltage drops to a lower float voltage VF.3.2 Protection Module Chip block diagram of the internal protection circuit shown in Figure 3. The circuit includes control logic circuit, sampling circuit, overcharge detection circuit, over-discharge de

34、tection parator, overcurrent detection parator, load short-circuit detection circuit, level-shifting circuit and reference circuit (BGR). This module constitutes a protection circuit shown in Figure 4. Under the chip supply voltage within the normal scope of work, and the VM pin voltage at the overc

35、urrent detection voltage, the battery is in normal operation, the charge and discharge control of the chip high power end of the CO and DO are level, when the chip is in normal working mode. Larger when the battery discharge current will cause voltage rise of the VM pin at the VM pin voltage at abov

36、e the current detection voltage Viov, then the battery is the current status, if this state to maintain the tiov overcurrent delay time, the chip ban on battery discharge, then the charge to control the end of CO is high, the discharge control side DO is low, the chip is in the current mode, general

37、 in order to play on the battery safer and more reasonable protection, the chip will battery over-discharge current to take over the discharge current delay time protection. The general rule is that the over-discharge current is larger, over the shorter the discharge current delay time. Above Overch

38、arge detection voltage, the chip supply voltage (Vdd> Vcu), the battery is in overcharge state, this state is to maintain the corresponding overcharge delay time tcu chip will be prohibited from charging the battery, then discharge control end DO is high, and charging control terminal CO is low,

39、the chip is in charging mode. When the supply voltage of the chip under the overdischarge detection voltage (Vdd <Vdl,), then the battery is discharged state, this state remains the overdischarge delay time tdl chip will be prohibited to discharge the battery at this time The charge control side

40、CO is high, while the discharge control terminal DO is low, the chip is in discharge mode.4.Circuit Design Two charge protection module structure diagram, the circuit can be divided into four parts: the power detection circuit (under-voltage detection circuit), part of the bias circuit (sampling cir

41、cuit, the reference circuit and bias circuit), the parator (including the overcharge detection /overdischarge detection parator, over-current detection and load short-circuit detection circuit) and the logic control part. This paper describes the under-voltage detection circuit (Figure 5), and gives

42、 the bandgap reference circuit (Figure 6). Battery charging, voltage stability is particularly important, undervoltage, overvoltage protection is essential, therefore integrated overvoltage, undervoltage protection circuit inside the chip, to improve power supply reliability and security. And protec

43、tion circuit design should be simple, practical, here designed a CMOS process, the undervoltage protection circuit, this simple circuit structure, process and easy to implement and can be used as high-voltage power integrated circuits and other power protection circuit. Undervoltage protection circu

44、it schematic shown in Figure 5, a total of five ponents: the bias circuit, reference voltage, the voltage divider circuit, differential amplifier, the output circuit. The circuit supply voltage is 10V; the M0, M1, M2, R0 is the offset portion of the circuit to provide bias to the post-stage circuit,

45、 the resistance, Ro, determine the circuit's operating point, the M0, M1, M2 form a current mirror; R1 M14 is the feedback loop of the undervoltage signal; the rest of the M3, M4 and M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, posed of four amplification parator; M15, DO, a reference voltage, t

46、he parator input with the inverting input is fi*ed (V+), partial pressure of the resistance R1, R2, R3, the input to the inverting input of the parator, when the normal working of the power supply voltage, the inverting terminal of the voltage detection is lost to the inverting terminal voltage of the parator is greater than V+. parator output is low, M14 cutoff, feedback circuit does not work; undervoltage occurs, the voltage divider of R1, R2, R3, reaction is more sensitive, lost to the inverting input voltage

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论