人教版高中数学必修一集合与函数基础知识讲解_第1页
人教版高中数学必修一集合与函数基础知识讲解_第2页
人教版高中数学必修一集合与函数基础知识讲解_第3页
人教版高中数学必修一集合与函数基础知识讲解_第4页
人教版高中数学必修一集合与函数基础知识讲解_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、集合与函数概念§11集合(一)集合的有关概念定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。2.表示方法:集合通常用大括号 或大写的拉丁字母A,B,C表示, 而元素用小写的拉丁字母a,b,c表示。3.集合相等:构成两个集合的元素完全一样。4.元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于

2、集合的元素的特征 确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大 的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. 互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为1,-2,而不是1,1,-2 无序性:即集合中的元素无顺序,可以任意排列、调换。练1:判断以下元素的全体是否组成集合,并说明理由:大于3小于11的偶数;我国的小河流;非负奇

3、数; 方程x2+1=0的解;某校2011级新生; 血压很高的人;著名的数学家; 平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。 例如,我们A表示“120以内的所有质数”组成的集合,则有3A,4A,等等。练:A=2,4,8,16,则4A,8A,32A.(二)例题讲解:例1用“”或“”符号填空: 8 N; 0 N; -3 Z; Q; 设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。练:5页题例2已知集合P的元素为, 若2

4、P且-1P,求实数m的值。练:考察下列对象是否能形成一个集合?身材高大的人 所有的一元二次方程直角坐标平面上纵横坐标相等的点 细长的矩形的全体比2大的几个数 的近似值的全体所有的小正数 所有的数学难题给出下面四个关系:R,0.7Q,00,0N,其中正确的个数是:( )A4个 B3个 C2个 D1个下面有四个命题:若-a,则a 若a,b,则a+b的最小值是2集合N中最小元素是1 x2+4=4x的解集可表示为2,2 其中正确命题的个数是( 由实数-a, a, ,2, -5为元素组成的集合中,最多有几个元素?分别为什么?求集合2a,a2+a中元素应满足的条件?若t,求t的值.一、集合的表示方法列举法

5、:把集合中的元素一一列举出来, 并用花括号“”括起来表示集合的方法叫列举法。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;说明:书写时,元素与元素之间用逗号分开;一般不必考虑元素之间的顺序;在表示数列之类的特殊集合时,通常仍按惯用的次序;集合中的元素可以为数,点,代数式等;列举法可表示有限集,也可以表示无限集。当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集用列举法表示为例1用列举法表示下列集合:(1) 小于

6、5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程的所有实数根组成的集合; 由120以内的所有质数组成的集合。描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:x|x-3>2,(x,y)|y=x2+1,x|直角三角形,;说明:描述法表示集合应注意集合的代表元素,如(x,y)|y= x2+3x+2与 y|y= x2+3x+

7、2是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。写法实数集,R也是错误的。用符号描述法表示集合时应注意:、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。例2用描述法表示下列集合:(1) 由适合x2-x-2>0的所有解组成的集合;(2) 到定点距离等于定长的点的集合;(3) 方程的所有实数根组成的集合(4) 由大于10小于20的所有整数组成的集合。 说明:列

8、举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意, 一般集合中元素较多或有无限个元素时,不宜采用列举法。练习:5页2题1用适当的方法表示集合:大于0的所有奇数2集合Ax|Z,xN,则它的元素是 。3.已知集合Ax|-3<x<3,xZ,B(x,y)|yx+1,xA,则集合B用列举法表示是 .判断下列两组集合是否相等? (1)A=x|y=x+1与B=y|y=x+1; (2)A=自然数与B=正整数二、集合的分类观察下列三个集合的元素个数1. 4.8, 7.3, 3.1, -9; 2. xR0<x<3; 3. xRx2+1=0由此可以得到集合的分类三、文氏图集合

9、的表示除了上述两种方法以外,还有文氏图法,即3,9,27A画一条封闭的曲线,用它的内部来表示一个集合,如下图所示: 表示3,9,27表示任意一个集合A 典型例题【题型一】元素与集合的关系、设集合A,a,b,B=a,a,ab,且A=B,求实数a,b.、已知集合Aa+2,(a+1),a+3a+3若1A,求实数a的值。【题型二】元素的特征、 已知集合M=xNZ,求M已知集合C=ZxN,求C点拔:要注意M与C的区别,集合M中的元素是自然数x,满足是整数,集合C是的元素是整数,满足条件是xN练习:.给出下列四个关系式:R;Q;0N;0其中正确的个数是( ) A.1 B.2 C.3 D.4.方程组的解组成

10、的集合是( ) A.2,1 B.-1,2 C.(2,1) D.(2,1)3. 把集合-3x3,xN用列举法表示,正确的是( ) A.3,2,1 B.3,2,1,0 C.-2,-1,0,1,2D.-3,-2,-1,0,1,2,34.下列说法正确的是( )A.0是空集B.xQZ是有限集C.xQx2+x+2=0是空集 D.2,1与1,2是不同的集合二填空题:、 以实数为元素构成的集合的元素最多有个;、 以实数a,2-a.,4为元素组成一个集合A,A中含有个元素,则的a值为 .、集合M=yZy=,xZ,用列举法表示是M。、已知集合A2a,a2-a,则a的取值范围是。三、解答题:、设Axx2+(b+2)

11、x+b+1=0,bR求A的所有元素之和。10.已知集合Aa,2b-1,a+2bB=xx3-11x2+30x=0,若A=B,求a,b的值。集合间的基本关系比较下面几个例子,试发现两个集合之间的关系:(1),;(2),;(3),观察可得:子集:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这 两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于B,或B包含AB A表示: 当集合A不包含于集合B时,记作AB(或BA) 用Venn图表示两个集合间的“包含”关系: 集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B 中的元素

12、是一样的,因此集合A与集合B相等,即若,则。 如:A=x|x=2m+1,mZ,B=x|x=2n-1,nZ,此时有A=B。真子集定义:若集合,但存在元素,则称集合A是集合B的真子集。 记作:A B(或B A) 读作:A真包含于B(或B真包含A)4.空集定义:不含有任何元素的集合称为空集。记作:用适当的符号填空: ; 0 ; ; 5.几个重要的结论: 空集是任何集合的子集;对于任意一个集合A都有A。 空集是任何非空集合的真子集; 任何一个集合是它本身的子集; 对于集合A,B,C,如果,且,那么。练习:填空: 2 N; N; A; 已知集合Ax|x3x20,B1,2,Cx|x<8,xN,则 A

13、 B; A C; 2 C; 2 C说明:注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;在分析有关集合问题时,要注意空集的地位。结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个, 特别地,空集的子集个数为1,真子集个数为0。(二)例题讲解:【题型】集合的子集问题、 写出集合a,b,c的所有子集,并指出其中哪些是真子集,哪些是非空的真子集。、 已知集合M满足2,3M1,2,3,4,5求满足条件的集合M、 已知集合Ax|x2-2x-3=0,B=x|ax=1若BA,则实数a的值构成的集合是()A. -1,0, B.-1,0 C.-1,

14、 D.,04.设集合A=,aB=2,a2-3a+4且BA,求a的值。5.已知集合且,求实数m的取值范围。 ()练习:1、判断下列集合的关系. (1) N_Z; (2) N_Q; (3) R_Z; (4) R_Q; (5) A=x| (x-1)2=0,B=y|y2-3y+2=0; (6) A=1,3,B=x|x2-3x+2=0; (7) A=-1,1,B=x|x2-1=0; (8)A=x|x是两条边相等的三角形,B=x|x是等腰三角形。2、设A=0,1,B=x|xA,问A与B什么关系?3、判断下列说法是否正确?(1)NZQR; (2)AA; (3)圆内接梯形等腰梯形; (4)NZ; (5); (

15、6)4.有三个元素的集合A,B,已知A=2,x,y,B=2x,2,2y,且A=B,求x,y的值。解答题:1.已知集合,且满足,求实数的取值范围。2.已知三个元素集合Ax,xy,x-y,B=0,x,y且A=B,求x与y的值。1.1.3 集合间的基本运算(共1课时)考察下列集合,说出集合C与集合A,B之间的关系:(1),;(2),;1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B 的并集,即A与B的所有部分, 记作AB, 读作:A并B 即AB=x|xA或xB。 Venn图表示: 说明:定义中要注意“所有”和“或”这两个条件。 讨论:AB与集合A、B有什么特殊的关系

16、?AA , A , AB BAABA , ABB .巩固练习(口答): A3,5,6,8,B4,5,7,8,则AB ;设A锐角三角形,B钝角三角形,则AB ; Ax|x>3,Bx|x<6,则AB 。 2. 交集定义:一般地,由属于集合A且属于集合B的所有元素组成的集合,叫作集合A、B的交集(intersection set),记作:AB 读作:A交B 即:ABx|xA,且xB(阴影部分即为A与B的交集)Venn图表示: 常见的五种交集的情况:ABA(B)B AA B BA说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:AB与A、B、BA的关系?A

17、A A AB BAABA ABB 巩固练习(口答):A3,5,6,8,B4,5,7,8,则AB ;A等腰三角形,B直角三角形,则AB ; Ax|x>3,Bx|x<6,则AB 。 3.一些特殊结论 若A,则AB=A; 若B,则AB=A;若A,B两集合中,B=,,则A=, A=A。【题型一】并集与交集的运算【例1】-1123设A=x|-1<x<2,B=x|1<x<3,求AB。 解:AB=x|-1<x<2x|1<x<3=x|-1<x<3.【例2】设A=x|x>-2,B=x|x<3,求AB。-23解:在数轴上作出A、B

18、对应部分如图 AB=x|x>-2x|x<3=x|-2<x<3。【例3】已知集合Ay|y=x2-2x-3,xR,B=y|y=-x2+2x+13,xR求AB、AB【题型二】并集、交集的应用例:设集合Aa+1,3,5,B=2a+1,a2+2a,a2+2a-1,当AB=,时,求AB解:a+12 a1或-3当a1时,集合B的元素a2+2a3,2a+13,由集合的元素应具有互异性的要求可知a1.当a-3时,集合B=-5, AB=-5,5练:.已知3,4,m2-3m-1m,-=-3,则m。练习:. 设A=x|x是等腰三角形,B=x|x是直角三角形,则AB。 x|x是等腰直角三角形。设

19、A=4,5,6,8,B=3,5,7,8,则AB。 设A=x|x是锐角三角形,B=x|x是钝角三角形,则AB。4. 已知集合Mx|x-2<0,N=x|x+2>0,则MN等于。 设A不大于20的质数,Bx|x2n+1,nN*,用列举法写出集合AB。6.已知集合Mx|y=x2-1,N=y|y=x2-1,那么MN等于()A.B.NC.MD.R7、 若集合A1,3,x,B=1,x2,AB1,3,x,则满足条件的实数x的个数有() A.1个 B.2个 C.3个 D.4个8. 满足条件M11,2,3的集合M的个数是 。9. 已知集合Ax|-1x2,B=x|2axa+3,且满足AB,则实数a的聚取

20、值啊范 围是 。集合的基本运算思考1 U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何关系? 集合B是集合U中除去集合A之后余下来的集合。 (一). 全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么 就称这个集合为全集,记作U,是相对于所研究问题而言的一个相对概念。补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集 合A相对于全集U的补集, 记作:,读作:A在U中的补集,即 Venn图表示:(阴影部分即为A在全集U中的补集) 说明:补集的概念必须要有全集的限制讨论:集合A与之间有什么

21、关系?借助Venn图分析 巩固练习(口答):U=2,3,4,A=4,3,B=,则= ,= ;设Ux|x<8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ; 设U三角形,A锐角三角形,则 。 【题型1】求补集【例1】设全集, 求,【例2】设全集,求, ,。 (结论:)【例3】设全集U为R,若 ,求。(答案:)【例4】设全集Ux|-1x3,A=x|-1x3,B=x|x2-2x-3=0,求,并且判断和集合B的关系。【题型1】集合的混合运算已知全集为R,集合P=x|xa2+4a+1,aR,Q=y|y-b2+2b+3,bR求PQ和P。(III)课堂练习: 若S=2,3,4,A=4,3,则C

22、SA=2 ;若S=三角形,B=锐角三角形,则CSB=直角三角形或钝角三角形 ; 若S=1,2,4,8,A=ø,则CSA= S ; 若U=1,3,a2+2a+1,A=1,3,CUA=5,则a= ;-1已知A=0,2,4,CUA=-1,1,CUB=-1,0,2,求B=1,4;设全集U=2,3,m2+2m-3,A=|m+1|,2,CUA=5,求m的值;(m= - 4或m=2) 已知全集U=1,2,3,4,A=x|x2-5x+m=0,xU,求CUA、m;(答案:CUA=2,3,m=4;CUA=1,4,m=6)已知全集U=R,集合A=x|0<x-15,求CUA,CU(CUA)。 已知M=

23、1,N=1,2,设A=(x,y)|xM,yN,B=(x,y)|xN,yM,求AB,AB。AB=(1,1),AB=(1,1),(1,2),(2,1) 已知集合M4,7,8,且M中至多有一个偶数,则这样的集合共有( );A 3个 B 4个 C 6个 D5个 设集合A=-1,1, B=x|x2-2ax+b=0, 若B, 且B, 求a, b的值 提高内容:已知X=x|x2+px+q=0,p2-4q>0,A=1,3,5,7,9,B=1,4,7,10,且,试 求p、q;集合A=x|x2+px-2=0,B=x|x2-x+q=0,若AB=-2,0,1,求p、q;A=2,3,a2+4a+2,B=0,7,a

24、2+4a-2,2-a,且AB =3,7,求B22.某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数。集合中元素的个数在研究集合时,经常遇到有关集合中元素的个数问题。我们把含有有限个元素的集合A叫做有限集,用card(A)表示集合A中元素的个数。例如:集合A=a,b,c中有三个元素,我们记作card(A)=3. 结论:已知两个有限集合A,B,有:card(AB)=card(A)+card(B)

25、-card(AB). 例1 学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛? 解设A=田径运动会参赛的学生,B=球类运动会参赛的学生,AB=两次运动会都参赛的学生,AB=所有参赛的学生因此card(AB)=card(A)+card(B)-card(AB)=8+12-3=17.答:两次运动会中,这个班共有17名同学参赛.在某校高一(5)班的学生中参加物理课外小组的有20人参加数学课外小 组的有25人,既参加数学课外小组又参加物理课外小组的有10人,既未参加物理课外小组又未参加数学课外

26、小组的有15人,则 这个班的学生总人数是A. 70 B. 55 C. 50 D. 无法确定. 给出下列命题: 给出下列命题: 若card(A)=card(B),则A=B; 若card(A)=card(B), 则card(AB)=card(AB) , 若AB= 则card(AB)-card(A)=card(B) 若A= ,则card(AB)=card(A) 若A B,则card(AB)=card(A) , 其中正确的命题的序号是高一数学必修1 集合练习题1一选择题1下列说法正确的是()A某个村子里的年青人组成一个集合B所有小正数组成的集合C集合,和,表示同一个集合D这些数组成的集合有五个元素2下

27、面有四个命题:()集合中最小的数是否;()是自然数;(),是不大于的自然数组成的集合;()其中正确的命题的个数是()A个个个个3给出下列关系:()()()()其中正确的个数为()个个个个4给出下列关系:()是空集;()()集合()集合其中正确的个数为()个个个个下列四个命题:()空集没有了集;()空集是任何一个集合的真子集;()空集的元素个数为零;()任何一个集合必有两个或两个以上的子集其中正确的有()0个1个2个3个已知集合那么等于(),已知全集集合()二填空题方程的解集为用列举法表示为_.用列举法表示不等式组的整数解集合为_.10已知菱形,正方形,平行四边形,那么,之间的关系是_.11已知

28、全集,集合,则用列举法表示为_.三解答题12已知13已知14若集合则满足于条件的实数的个数有()个个个个15设集合,则实数_16已知全集那么17. 18设求a的取值范围19试用适当的符号把连接起来20已知集合 的值或取值范围第1讲 § 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set),其元素具有三个特征,即确定性、互异性

29、、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“ ”括起来,基本形式为,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为,既要关注代表元素x,也要把握其属性,适用于无限集.3. 通常用大写拉丁字母表示集合. 要记住一些常见数集的表示,如自然数集N,正整数集或,整数集Z,有理数集Q,实数集R.4. 元素与集合之间的关系是属于(belong to)与不属于(not belong to),分别用符号、表示,例如,.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程的所有实数根组成的集合;(2

30、)大于2且小于7的整数.解:(1)用描述法表示为:; 用列举法表示为.(2)用描述法表示为:; 用列举法表示为.【例2】用适当的符号填空:已知,则有: 17 A; 5 A; 17 B.解:由,解得,所以;由,解得,所以;由,解得,所以.【例3】试选择适当的方法表示下列集合:(教材P6 练习题2, P13 A组题4)(1)一次函数与的图象的交点组成的集合; (2)二次函数的函数值组成的集合;(3)反比例函数的自变量的值组成的集合.解:(1).(2).(3).点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为,也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范

31、围,有着本质上不同,分析时一定要细心.*【例4】已知集合,试用列举法表示集合A解:化方程为:应分以下三种情况:方程有等根且不是:由 =0,得,此时的解为,合方程有一解为,而另一解不是:将代入得,此时另一解,合方程有一解为,而另一解不是:将代入得,此时另一解为,合综上可知,点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 § 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A、B

32、,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作(或),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(),且集合B是集合A的子集(),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作. 3. 如果集合,但存在元素,且,则称集合A是集合B的真子集(proper subset),记作AB(或BA).4. 不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5. 性质:;若,则; 若,则;若,则.¤例题精讲:【例1】用适当的符号填空:(1)菱形 平行四边形

33、; 等腰三角形 等边三角形.(2) ; 0 0; 0; N 0.解:(1), ;(2)=, , ,.B A B C D【例2】设集合,则下列图形能表示A与B关系的是( ).解:简单列举两个集合的一些元素,易知BA,故答案选A另解:由,易知BA,故答案选A【例3】若集合,且,求实数的值.解:由,因此,.(i)若时,得,此时,;(ii)若时,得. 若,满足,解得.故所求实数的值为或或.点评:在考察“”这一关系时,不要忘记“” ,因为时存在. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A=a,a+b,a+2b,B=a,ax,ax2. 若A=B,求实数x的值.解:若a+

34、ax2-2ax=0, 所以a(x-1)2=0,即a=0或x=1.当a=0时,集合B中的元素均为0,故舍去;当x=1时,集合B中的元素均相同,故舍去.若2ax2-ax-a=0.因为a0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x1,所以只有.经检验,此时A=B成立. 综上所述.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 § 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn图表达集合的关系及运

35、算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set)由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号(读作“A并B”)(读作“A交B”)(读作“A的补集”)符号图形

36、表示UA¤例题精讲:【例1】设集合.AB-1359x解:在数轴上表示出集合A、B,如右图所示:,【例2】设,求:(1); (2).解:.(1)又,;(2)又,得. .【例3】已知集合,且,求实数m的取值范围.-2 4 m xB A 4 m x解:由,可得.在数轴上表示集合A与集合B,如右图所示:由图形可知,.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集,求, ,并比较它们的关系. 解:由,则. 由,则 由,则,.由计算结果可以知道,.另解:作出Venn图,如右图所示,由图形可以直接观察出来结果.点评:可用V

37、enn图研究与 ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 § 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:,.2. 集合元素个数公式:.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精

38、讲:【例1】设集合,若,求实数的值.解:由于,且,则有:当解得,此时,不合题意,故舍去;当时,解得.不合题意,故舍去;,合题意.所以,.【例2】设集合,求, .(教材P14 B组题2)解:.当时,则,;当时,则,;当时,则,;当且且时,则,.点评:集合A含有参数a,需要对参数a进行分情况讨论. 罗列参数a的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A =|, B =|,若AB=B,求实数的值解:先化简集合A=. 由AB=B,则BA,可知集合B可为,或为0,或4,或.(i)若B=,则,解得;(ii)若B,代入得=0=1或=,当=1时,B=A,

39、符合题意;当=时,B=0A,也符合题意(iii)若4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B=12,4,不符合题意综上可得,=1或点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误这需要在解题过程中要全方位、多角度审视问题. 【例4】对集合A与B,若定义,当集合,集合时,有= . (由教材P12 补集定义“集合A相对于全集U的补集为”而拓展)解:根据题意可知,由定义,则.点评:

40、运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则也相当于.第5讲 § 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A、B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个数,在集合B中都有唯一确定的数和它对应,那么就称:AB为从集合A到集合B的一个函数(func

41、tion),记作=,其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).2. 设a、b是两个实数,且a<b,则:x|axba,b 叫闭区间; x|a<x<b(a,b) 叫开区间;x|ax<b, x|a<xb,都叫半开半闭区间.符号:“”读“无穷大”;“”读“负无穷大”;“+”读“正无穷大”. 则,.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. ¤例题精讲:【例1】求下列函数的定义域: (1);(2).解:(1)由,解得且

42、,所以原函数定义域为.(2)由,解得且,所以原函数定义域为.【例2】求下列函数的定义域与值域:(1); (2).解:(1)要使函数有意义,则,解得. 所以原函数的定义域是.,所以值域为.(2). 所以原函数的定义域是R,值域是.【例3】已知函数. 求:(1)的值; (2)的表达式 解:(1)由,解得,所以.(2)设,解得,所以,即.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数.(1)求的值;(2)计算:.解:(1)由.(2)原式点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是

43、解答后一问的关键.第6讲 § 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同).3. 一般地,设A、B是两个非空的集

44、合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)记作“”. 判别一个对应是否映射的关键:A中任意,B中唯一;对应法则f.¤例题精讲:【例1】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是_,这个函数的定义域为_ 解:盒子的高为x,长、宽为,所以体积为V. 又由,解得. 所以,体积V以x为自变量的函数式是,定义域为.【例2】已知f(x)= ,求ff(0)的值.解: , f(0)=. 又 &

45、gt;1, f()=()3+()-3=2+=,即ff(0)=.【例3】画出下列函数的图象:(1); (教材P26 练习题3)(2). 解:(1)由绝对值的概念,有.所以,函数的图象如右图所示.(2),所以,函数的图象如右图所示. 点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数的函数值表示不超过x的最大整数,例如,当时,写出的解析式,并作出函数的图象. 解:. 函数图象如右:点评:解题关键是理解符号的概念,抓住分段函数的对应函数式.第7讲 § 函数的单调性¤学习目标:通过已

46、学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function). 仿照增函数的定义可定义减函数.2. 如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间. 在单调区间上,增函数的图

47、象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x、x给定区间,且x<x;计算f(x)f(x) 判断符号下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数在区间(0,1)上的单调性.解:任取(0,1),且. 则. 由于,故,即. 所以,函数在(0,1)上是减函数. 【例2】求二次函数的单调区间及单调性.解:设任意,且. 则 .若,当时,有,即,从而,即,所以在上单调递增. 同理可得在上单调递减.【例3】求下列函数的单调区间:(1);(2).解

48、:(1),其图象如右. 由图可知,函数在上是增函数,在上是减函数.(2),其图象如右.由图可知,函数在、上是增函数,在、上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y轴右侧的图象,并把y轴右侧的图象对折到左侧,得到的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知,指出的单调区间.解: , 把的图象沿x轴方向向左平移2个单位,再沿y轴向上平移3个单位,得到的图象,如图所示.由图象得在单调递增,在上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知平移变换规律. 第8讲 § 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数的定义域为I,如果存在实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论