下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上函数零点的求法及零点的个数题型1:求函数的零点。例1 求函数的零点.解题思路求函数的零点就是求方程的根解析令 ,即函数的零点为-1,1,2。反思归纳 函数的零点不是点,而是函数函数的图像与x轴交点的横坐标,即零点是一个实数。题型2:确定函数零点的个数。例2 求函数f(x)=lnx2x 6的零点个数.解题思路求函数f(x)=lnx2x 6的零点个数就是求方程lnx2x 6=0的解的个数解析方法一:易证f(x)= lnx2x 6在定义域上连续单调递增,又有,所以函数f(x)= lnx2x 6只有一个零点。方法二:求函数f(x)=lnx2x 6的零点个数即是求方程lnx2x
2、 6=0的解的个数即求的交点的个数。画图可知只有一个。反思归纳求函数的零点是高考的热点,有两种常用方法:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图像联系起来,并利用函数的性质找出零点。题型3:由函数的零点特征确定参数的取值范围例3 (2007·广东)已知a是实数,函数,如果函数在区间上有零点,求a的取值范围。解题思路要求参数a的取值范围,就要从函数在区间上有零点寻找关于参数a的不等式(组),但由于涉及到a作为的系数,故要对a进行讨论 解析 若 , ,显然在上没有零点, 所以 . 令 , 解得 当 时, 恰有一个零点在上; 当,即时,在上也恰有一个
3、零点。 当在上有两个零点时, 则 或解得或综上所求实数的取值范围是 或 。反思归纳二次函数、一元二次方程和一元二次不等式是一个有机的整体,也是高考热点,要深刻理解它们相互之间的关系,能用函数思想来研究方程和不等式,便是抓住了关键.二次函数的图像形状、对称轴、顶点坐标、开口方向等是处理二次函数问题的重要依据。考点3 根的分布问题例5 已知函数的图像与x轴的交点至少有一个在原点的右侧,求实数m的取值范围解题思路由于二次函数的图象可能与x轴有两个不同的交点,应分情况讨论解析(1)若m=0,则f(x)=3x+1,显然满足要求.(2)若m0,有两种情况:原点的两侧各有一个,则m0; 都在原点右侧,则解得
4、0m1,综上可得m(,1。反思归纳二次方程根的分布是高考的重点和热点,需要熟练掌握有关二次方程ax2+bx+c=0(a0)的根的分布有关的结论:方程f(x)=0的两根中一根比r大,另一根比r小a·f(r)0.二次方程f(x)=0的两根都大于r二次方程f(x)=0在区间(p,q)内有两根二次方程f(x)=0在区间(p,q)内只有一根f(p)·f(q)0,或f(p)=0,另一根在(p,q)内或f(q)=0,另一根在(p,q)内.方程f(x)=0的两根中一根大于p,另一根小于q(pq)(二)、强化巩固训练1、函数有且仅有一个正实数的零点,则实数的取值范围是( )。A;B;C;D解
5、析 B;依题意得(1)或(2)或(3)显然(1)无解;解(2)得;解(3)得又当时,它显然有一个正实数的零点,所以应选B。2、方程的实数解的个数为 _ 。解析 2;在同一个坐标系中作函数及的图象,发现它们有两个交点故方程的实数解的个数为2。3、已知二次函数,若在区间1,1内至少存在一个实数c,使f(c)>0,则实数p的取值范围是_。解析 (3,) 只需或即3p或p1.p(3, )。4、设函数的图象的交点为,则所在的区间是( )。A.(0,1) B.(1,2) C.(2,3) D.(3,4) 答案B。5、若方程的两根中,一根在0和1之间,另一根在1和2之间,求实数k的取值范围。解析 ;令,
6、则依题意得,即,解得。(三)、小结反思:本课主要注意以下几个问题:1利用函数的图象求方程的解的个数;2一元二次方程的根的分布;3利用函数的最值解决不等式恒成立问题 。补充题:1、定义域和值域均为-a,a (常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1) 方程fg(x)=0有且仅有三个解; (2) 方程gf(x)=0有且仅有三个解; (3) 方程ff(x)=0有且仅有九个解; (4)方程gg(x)=0有且仅有一个解。-aaxyy=g(x)Oa-a-aaxyy=f(x)Oa-a那么,其中正确命题的个数是( )。 A 1; B. 2; C. 3;D. 4。解析 B;由图可知,由左图及fg(x)=0得,由右知方程fg(x)=0有且仅有三个解,即(1)正确;由右图及gf(x)=0得,由左图知方程gf(x)=0有且仅有一个解,故(2)错误;由左图及ff(x)=0得,又由左图得到方程ff(x)=0最多有三个解,故(3)错误;由右图及gg(x)=0得,由右图知方程gg(x)=0有且仅有一个解,即(4)正确,所以应选择B2、已知关于x的二次方程。(1)若方程有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的范围。(2)若方程两根均在区间(0,1)内,求m的范围。解析(1)条件说明抛物线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农家乐农家乐旅游联盟合同
- 2024餐厅合作伙伴关系与协调合同
- 2024年度采石厂安全生产许可证转让合同
- 2024年度农村电商电动三轮车租赁合同
- 2024年度废弃船舶拆解环境治理合同
- 广告市场的未来发展预测考核试卷
- 手机应用在智能出行中的应用考核试卷
- 2024年度广告合同:城市户外广告位的投放
- 文化创意产业创新驱动的产业发展的效益分析考核试卷
- 2024年度美团汽车租赁商家入驻合同
- (统编版2024)语文七年级上册 第四单元 《阅读综合实践 》 课件(新教材)
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 2024粤东西粤北地区教师全员轮训培训心得总结
- ICS国际标准分类号
- 抹灰整改通知单
- 锅炉日常运行记录表
- 水厂运行质量控制管理规程
- 国外表面活性剂名称
- 学习能力的培养ppt课件
- 中国抑郁障碍防治指南(第二版)简介完整版
- 涂料生产工艺流程(SEM)
评论
0/150
提交评论