第16章量子物理基础_第1页
第16章量子物理基础_第2页
第16章量子物理基础_第3页
第16章量子物理基础_第4页
第16章量子物理基础_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第16章量子物理基础第16章量子物理基础热辐射热辐射 : 由温度决定的物体的电磁辐射由温度决定的物体的电磁辐射。一一. 热辐射热辐射 热辐射热辐射 普朗克能量子假设普朗克能量子假设 头头部部热热辐辐射射像像头部各部分温度不同,因此它们头部各部分温度不同,因此它们的热辐射存在差异,这种差异可的热辐射存在差异,这种差异可通过热象仪转换成可见光图象。通过热象仪转换成可见光图象。单单色色辐辐出出度度波长波长 ( m )第16章量子物理基础辐射和吸收达到平衡时,物体的温度不再变化,此时物体的辐射和吸收达到平衡时,物体的温度不再变化,此时物体的热辐射称为平衡热辐射。热辐射称为平衡热辐射。物体辐射电磁波的同

2、时,也吸收电磁波。物物体辐射电磁波的同时,也吸收电磁波。物体辐射本领越大,其吸收本领也越大。体辐射本领越大,其吸收本领也越大。 室温室温高温高温吸吸收收辐辐射射白底黑花瓷片白底黑花瓷片第16章量子物理基础dd)(MTM0)d()(TMTM单色辐射出射度(单色辐出度):一定温度单色辐射出射度(单色辐出度):一定温度 T 下,物体单位面元在单位时间内下,物体单位面元在单位时间内 发射的波发射的波长在长在 +d 内的辐射能内的辐射能 dM 与波长间隔与波长间隔 d 的比值的比值辐出度:物体辐出度:物体 (温度温度 T) 单位表面在单位时单位表面在单位时间内发射的辐射能,间内发射的辐射能,为为 温温度

3、越高,辐出度越大。另外,辐出度还与材度越高,辐出度越大。另外,辐出度还与材料性质有关。料性质有关。)(TM 说明说明第16章量子物理基础二二. 黑体辐射黑体辐射绝对黑体绝对黑体(黑体黑体):能够全部吸收各种波长的:能够全部吸收各种波长的辐射且不反射和透射的物体。辐射且不反射和透射的物体。黑体辐射的特点黑体辐射的特点 : 与同温度其它物体的热辐射相比,黑体热辐与同温度其它物体的热辐射相比,黑体热辐射射本领本领最强最强煤烟煤烟约99%黑体模型黑体模型物体热辐物体热辐射射温温度度材料性材料性质质黑体热辐黑体热辐射射温温度度材料性材料性质质第16章量子物理基础1. 斯特藩斯特藩玻耳兹玻耳兹曼定律曼定律

4、04d)()(TTMTMBB428Km W1067. 5式中式中辐出度与辐出度与 T 4 成正比成正比. .Km109026.Tm2. 维恩位移定维恩位移定律律峰值波长峰值波长 m 与温度与温度 T 成反比成反比 0.5 1.0 1.5 2.01050MB (10-7 W / m2 m) ( m)可见光5000K6000K3000K4000K第16章量子物理基础太阳表面温度太阳表面温度Mm K 61661047. 0109 . 2109 . 266m6sT274 W/m1020. 8)(sBTTM辐出度辐出度测得太阳光谱的峰值测得太阳光谱的峰值波长在绿光区域,为波长在绿光区域,为 m = 0.

5、47 m.试估算试估算太阳的表面温度和辐太阳的表面温度和辐出度。出度。例例太阳不是黑体,所以按黑体计算出的太阳不是黑体,所以按黑体计算出的 Ts 低于低于太阳的实际温度;太阳的实际温度;M B (T) 高于实际辐出度。高于实际辐出度。说明说明解解第16章量子物理基础三三. 经典物理的解释及普朗克公式经典物理的解释及普朗克公式MB 瑞利瑞利 金斯公式金斯公式(1900年年)维恩公式维恩公式(1896年年)12125 kThcBehc)T(M 普朗克公式普朗克公式(1900年年)为解释这一公式,为解释这一公式,普朗克提出了能量普朗克提出了能量量子化假设。量子化假设。试验曲线试验曲线第16章量子物理

6、基础电电磁磁波波四四. .普朗克能量子假设普朗克能量子假设 若谐振子频率为若谐振子频率为 v ,则其能,则其能量是量是hv , 2hv, 3hv , , nhv , 首次提出微观粒子首次提出微观粒子的的能量是量子化的,打破了经典物能量是量子化的,打破了经典物理学中理学中能量能量连续的观念。连续的观念。普朗克常数普朗克常数 h = 6.62610-34 Js 腔腔壁壁上上的的原原子子能能量量与腔内电磁场交换能量时,与腔内电磁场交换能量时,谐振子能量的变化是谐振子能量的变化是 hv 的的整数倍整数倍. .说明说明第16章量子物理基础伏安特性曲线伏安特性曲线一一. 光电效应的实验规律光电效应的实验规

7、律v饱和电饱和电流流 iS v遏止电压遏止电压 Ua iS 光电子光电子数数amUme221vI (I, v)AKU16.2 光电效应光电效应 爱因斯坦光子假说爱因斯坦光子假说iS3iS1iS2I1I2I3UaUiI1I2I3Ua 0光电子最大初动光电子最大初动能和能和 成线性关成线性关系系v截止频率截止频率 0v即时发射即时发射迟滞时间不超过迟滞时间不超过 10-9 秒秒遏止电压与频率关系曲线遏止电压与频率关系曲线和和v 成成线线性性关关系系i第16章量子物理基础二二. 经典物理与实验规律的矛盾经典物理与实验规律的矛盾 电子在电磁波作用下作受迫振动,直到获电子在电磁波作用下作受迫振动,直到获

8、得足够能量得足够能量(与与 光强光强 I 有关有关) 逸出,不应存在红限逸出,不应存在红限 0 。 当光强很小时,电子要逸出,必须经较长时间的能量积累。当光强很小时,电子要逸出,必须经较长时间的能量积累。 只有光的频率只有光的频率 0 时,电子才会逸出。时,电子才会逸出。 逸出光电子的多少取决于光强逸出光电子的多少取决于光强 I 。 光电子即时发射,滞后时间不超过光电子即时发射,滞后时间不超过 109 秒秒。总结总结 光电子最大初动能和光频率光电子最大初动能和光频率 成线性关系。成线性关系。 光电子最大初动能取决于光强,和光的频率光电子最大初动能取决于光强,和光的频率 无关。无关。第16章量子

9、物理基础三三. 爱因斯坦光子假说爱因斯坦光子假说 光电效应方程光电效应方程 光是光子流光是光子流 ,每一光子能量为,每一光子能量为 h ,电子吸电子吸收一个光子收一个光子2m21vmAhA 为为逸逸出功出功 单位时间到达单位垂直面积的光子数为单位时间到达单位垂直面积的光子数为N,则,则光强光强 I = Nh . I 越强越强 , 到阴极的光子越多到阴极的光子越多, 则则逸逸出的光电子出的光电子越多。越多。 电子吸收一个光子即可逸出,不需要长时间的能量积累。电子吸收一个光子即可逸出,不需要长时间的能量积累。 光频率光频率 A/h 时,时,电子吸收一个光子即可克服逸出功电子吸收一个光子即可克服逸出

10、功 A 逸出。逸出。讨讨论论 光电子最大初动能和光频率光电子最大初动能和光频率 成线性关系。成线性关系。 第16章量子物理基础chchm2hchcmp光子动量光子动量四四. 光的波粒二象性光的波粒二象性hcmE2光子能量光子能量光子质量光子质量粒子性粒子性波动性波动性五五. 光电效应的应用光电效应的应用 光电成像器件能将可见或不可见的辐射图像光电成像器件能将可见或不可见的辐射图像转换或增强成为可观察记录、传输、储存的转换或增强成为可观察记录、传输、储存的图像。图像。第16章量子物理基础红外变像管红外变像管红外辐射图像红外辐射图像可见光图像可见光图像像 增 强像 增 强器器微弱光学图像微弱光学图

11、像 高亮度可见光学图像高亮度可见光学图像测量波长在测量波长在 2001200 nm 极微弱光的功率极微弱光的功率光电倍增光电倍增管管第16章量子物理基础 00 散射线中有两种波长散射线中有两种波长 0 、 ,0的增大而增大。的增大而增大。随散射随散射角角 探测器 016. 3 康普顿效应康普顿效应一一. 实验规律实验规律X 光管光阑散射物体第16章量子物理基础二二. 经典物理的解释经典物理的解释经典理论只能说明波长不变的散射,而不经典理论只能说明波长不变的散射,而不能说明康普顿散射。能说明康普顿散射。电子电子受迫受迫振动振动同频同频率散率散射线射线发射发射 单色单色电磁电磁波波说明说明受迫振动

12、受迫振动v000 00 照射照射散射物体第16章量子物理基础三三. 光子理论解释光子理论解释能量、动量守能量、动量守恒恒1. 入射光子与外层电子弹性入射光子与外层电子弹性碰撞碰撞 外外层层电电子子受原子核束缚受原子核束缚较弱较弱动能动能光子能量光子能量 近似自由近似自由近似静止近似静止静止静止 自由自由 电子电子sinsincoscos0vvmchmchch2200mchcmh0hh20cm2mcch0chvm0第16章量子物理基础2. X 射线光子和原子内层电子相互作用射线光子和原子内层电子相互作用光子质量远小于原子,碰撞时光子不损失能量光子质量远小于原子,碰撞时光子不损失能量,波长不变。,

13、波长不变。原子自由电子000内层电子被紧束缚,光子相当于和整个原子发生碰撞。内层电子被紧束缚,光子相当于和整个原子发生碰撞。所以,波长改变所以,波长改变量量2sin220cnm 0024. 0/0cmhc康普顿波长康普顿波长光光子子内层电内层电子子外层电外层电子子波长变大的散射线波长变大的散射线波长不变的散射线波长不变的散射线(1) 说明说明第16章量子物理基础(2) 波长波长 0 轻物质(多数电子处于弱束缚状态轻物质(多数电子处于弱束缚状态 )弱弱强强重物质(多数电子处于强束缚状态重物质(多数电子处于强束缚状态 )强强弱弱吴吴有有训训实实验验结结果果第16章量子物理基础例例 0 = 0.02

14、nm 的的X射线与静止的自由电子碰撞射线与静止的自由电子碰撞, 若从与入射线若从与入射线 成成900的方向观察散射线,求散射线的波长的方向观察散射线,求散射线的波长 。解解能量守恒,反冲电子动能等于光子能量之差能量守恒,反冲电子动能等于光子能量之差动量守恒动量守恒hhEk0hchc022011hpeeekmpmE22122vhep根据动能、动量关系根据动能、动量关系nm 022. 0,波长为,波长为0h第16章量子物理基础一一. 实验规律实验规律记录氢原子光谱原理示意图 氢原子光谱氢原子光谱 玻尔的氢原子理论玻尔的氢原子理论氢放电管23 kV光阑全息干板 三棱镜(或光栅)光 源第16章量子物理

15、基础)11(122nkRH氢光谱的里德伯常量氢光谱的里德伯常量 17m101373097. 1HR(3) k = 2 (n = 3, 4, 5, ) 谱线系谱线系 赖曼系赖曼系 (1908年)年)(2)谱线的波数可表示为谱线的波数可表示为 k = 1 (n = 2, 3, 4, ) 谱线系谱线系 巴耳末系(巴耳末系(1880年)年)(1) 分立线状光谱分立线状光谱氢原子的巴耳末线系照片氢原子的巴耳末线系照片第16章量子物理基础hEEnk|2. 跃迁假设跃迁假设nkEE二二. 玻尔氢原子理论玻尔氢原子理论1. 定态假设定态假设原子从一个定态跃迁到另原子从一个定态跃迁到另一定态,会发射或吸收一一定

16、态,会发射或吸收一个光子,频率个光子,频率稳稳定定状状态态 这些定态的能量不连续这些定态的能量不连续 不辐射电磁波不辐射电磁波 电子作圆周运动电子作圆周运动v第16章量子物理基础vr向心力是库仑向心力是库仑力力 220241rermv2hnrmLv由上两式得由上两式得, , 第第 n 个定态的轨个定态的轨道半径为道半径为 , 3 , 2 , 1)(122202nrnmehnrnr2=4r1r2=9r13. 角动量量子化角动量量子化假设假设 nm 0529. 01r2120202814121nEreremEnnnv电子能量电子能量-13.6 eV轨道角动量轨道角动量玻尔半径玻尔半径第16章量子物

17、理基础En ( eV)氢氢原原子子能能级级图图莱曼系莱曼系 巴耳末系巴耳末系 帕邢系帕邢系布拉开系布拉开系021nEEnhEEknnk光频光频n = 1n = 2n = 3n = 4n = 5n = 6第16章量子物理基础cnknknk1波数波数(波长的倒数波长的倒数)17m 108 775 096. 1实验HR当时实验测得当时实验测得)11()11()(122221nkRnkhcEEEhcHkn理论17m 101 373 097. 1理论HR其中计算得到其中计算得到第16章量子物理基础里德伯里德伯 - 里兹并合原则里兹并合原则(1896年年)卢瑟福原子的有核模型卢瑟福原子的有核模型(1911

18、年)年)普朗克量子假设普朗克量子假设(1900年)年)玻尔氢原子理论玻尔氢原子理论(1913年)年)说说 明明l 成功的把氢原子结构和光谱线结构联系起来。成功的把氢原子结构和光谱线结构联系起来。l 局限性局限性: :不能处理复杂原子的问题,根源在于对微观不能处理复杂原子的问题,根源在于对微观 粒子的处理仍沿用了牛顿力学的观念粒子的处理仍沿用了牛顿力学的观念第16章量子物理基础假设假设: 实物粒子具有实物粒子具有 波粒二象性。波粒二象性。22202/1chcmhmchEv220/1cmhmhphvvv波动性波动性 ( , v)粒子性粒子性 (m , p)光光+实物粒子实物粒子+ ?一一. 德布罗

19、意假设德布罗意假设(1924年年)hmcE216.5 微观粒子的波粒二象性微观粒子的波粒二象性 不确定关系不确定关系 hmpv频率频率波长波长第16章量子物理基础革末革末戴维孙电子散射实验戴维孙电子散射实验(1927年年),观测到电,观测到电子衍射现象。子衍射现象。X射射线线电电子子束束(波长相同)(波长相同)衍射图样衍射图样电子双缝干涉图电子双缝干涉图样样物质波的实验验证:物质波的实验验证:杨氏双缝干涉图杨氏双缝干涉图样样第16章量子物理基础计算经过电势差计算经过电势差 U1 =150 V 和和 U2 =104 V 加加速的电子的德布罗意波长速的电子的德布罗意波长(不考虑相对论效(不考虑相对

20、论效应)应)。例例 解解 eUm2021v02meUvnm225. 11200UUemhmhvnm 1 . 01nm 0123. 02根根据据,加速后电子的速度为,加速后电子的速度为根据德布罗意关系根据德布罗意关系 p = h /,电子的德布罗意波长为电子的德布罗意波长为波长分别波长分别为为说明说明观测仪器的分辨本领观测仪器的分辨本领 22. 1DR 电子波波长电子波波长光波波长光波波长电子显微镜分电子显微镜分辨率远大于辨率远大于光学显微镜分光学显微镜分辨率辨率第16章量子物理基础二二. 不确定关系不确定关系 1. 动量动量 坐标不确定关系坐标不确定关系微观粒子的位置坐标微观粒子的位置坐标 x

21、 、 动量动量 分量分量 px 不不能同时具有确定的值。能同时具有确定的值。一个量确定的越准确,另一个量的不确定一个量确定的越准确,另一个量的不确定程度就越大。程度就越大。xpx、分别是分别是 x、 px 的不确定量,其乘积的不确定量,其乘积下面借助电子单缝衍射试验加以说明。下面借助电子单缝衍射试验加以说明。2xpx第16章量子物理基础px/hp 电电子子束束xsinx电子经过狭缝,其坐标电子经过狭缝,其坐标 x 的不确定量为的不确定量为 x ;大部分大部分电子落电子落在中央在中央明纹明纹x第16章量子物理基础sinpxhppx/sinhpxxpx0电子经过狭缝,其坐标电子经过狭缝,其坐标 x

22、 的不确定量为的不确定量为 x ;电电子子束束x 动量分量动量分量 px的的不确定量为不确定量为x/hp xsin减小缝宽减小缝宽 x, x 确定的确定的越准确越准确px的不确定度的不确定度, 即即px越大越大 第16章量子物理基础原子的线度约为原子的线度约为 10- -10 m ,求原子中电子速度的不确定量。,求原子中电子速度的不确定量。10313410101 . 914. 341063. 62xmmpxxvsm 108 . 55电子速度的不确定量为电子速度的不确定量为氢原子中电子速率约为氢原子中电子速率约为 106 m/s。速率不确定。速率不确定量与速率本身量与速率本身的的数量级基本相同,

23、因此原子数量级基本相同,因此原子中电子的位置和速度不能同时完全确定,也中电子的位置和速度不能同时完全确定,也没有确定的轨道。没有确定的轨道。 原子中电子的位置不确定量原子中电子的位置不确定量 10- -10 m,由不确定关系,由不确定关系2xpx例例解解说说明明第16章量子物理基础2. 能量能量 时间不确定关系时间不确定关系反映了原子能级宽度反映了原子能级宽度E 和原子在和原子在该能级的平均寿命该能级的平均寿命 t 之间的关系。之间的关系。 基态基态eV 1028tE辐射光谱线固有宽度辐射光谱线固有宽度hE hE 2EE 2EE 激发态激发态 E基态基态寿命寿命t光辐射光辐射2tE能级宽度能级

24、宽度平均寿命平均寿命 t 10-8 s平均寿命平均寿命 t 能级宽度能级宽度 E 0第16章量子物理基础一一. 波函数及其统计解释波函数及其统计解释 )(0) (20ee),(pxEtixtitx微观粒子微观粒子具有波动性具有波动性用物质波波函数描述用物质波波函数描述微观粒子状态微观粒子状态1925年薛定谔年薛定谔例如例如自由粒子沿自由粒子沿 x 轴正方向运动,由于其能量轴正方向运动,由于其能量、动量为常量,所以、动量为常量,所以 v 、 不随时间变化不随时间变化,其物质波是单色平面波,波函数为,其物质波是单色平面波,波函数为16.6 波函数波函数 一维定态薛定谔方程一维定态薛定谔方程 第16

25、章量子物理基础波函数的物理意义波函数的物理意义:2| ),(|tr t 时刻,粒子在空时刻,粒子在空间间 r 处的单位体积中出现的概率处的单位体积中出现的概率,又称为概率密度,又称为概率密度VtrtrVtrWd),(),(d| ),(|d*21. 时刻时刻 t , 粒子粒子在空间在空间 r 处处 dV 体积内出现的概率体积内出现的概率1ddd| ),(|2zyxtr2. 归一化条件归一化条件 ( (粒子在整个空间出现的概率粒子在整个空间出现的概率为为1)1) 3. 波函数必须单值、有限、波函数必须单值、有限、连续连续概率密度在任一处都是唯一、有限的概率密度在任一处都是唯一、有限的, , 并在整

26、个空间内连续并在整个空间内连续第16章量子物理基础电子数电子数 N=7电子数电子数 N=100电子数电子数 N=3000电子数电子数 N=20000电子数电子数 N=70000单个粒子在哪一处出现是偶然单个粒子在哪一处出现是偶然事件;事件;4. 大量粒子的分布有确定的统计规律。大量粒子的分布有确定的统计规律。出现概率小出现概率大电电子子双双缝缝干干涉涉图图样样第16章量子物理基础二二. 薛定谔方程薛定谔方程 (1926年年)描述微观粒子在外力场中运动的微分描述微观粒子在外力场中运动的微分方程方程 。质量质量 m 的粒子在外力场中运动,势能函数的粒子在外力场中运动,势能函数 V ( r , t

27、) ,薛定谔方程为,薛定谔方程为ttritrtrVzyxm),(),(),(2222222粒子在稳定力场中运动,势能函数粒子在稳定力场中运动,势能函数 V ( r ) 、能量能量 E 不随时间变化,粒子处于定态,定态不随时间变化,粒子处于定态,定态波函数写为波函数写为tEiertr)(),(由上两式得由上两式得第16章量子物理基础0)(2)(2222222rVEmrzyx定态薛定谔方定态薛定谔方程程粒子能粒子能量量(1)(1)求解求解 E (粒子能量)(粒子能量) ( r ) (定态波函数)定态波函数)(2)(2)势能函数势能函数 V 不随时间变不随时间变化。化。一维定态薛定谔方程一维定态薛定

28、谔方程(粒子在一维空间运动(粒子在一维空间运动) ) 02d)(d222xVEmxx描描述述外外力力场场的的势势能能函函数数说明说明第16章量子物理基础三三. 一维无限深势阱中的粒子一维无限深势阱中的粒子 0 x a 区域,定态薛定谔方区域,定态薛定谔方程为程为x0 aV ( x )势能函数势能函数 02dd222xmExx222mEk令令V (x) = 0 0 x aV (x) = 0 a0)(x0)(x0 x 或或 x U0 , R0, 即使粒子总能量大于势垒高度,入射粒子并非即使粒子总能量大于势垒高度,入射粒子并非全部透射进入全部透射进入 III 区区,仍有一定概率被反射回仍有一定概率被

29、反射回 I 区。区。 (2)E U0 , T0, 虽然粒子总能量小于势垒高度,入射粒子仍虽然粒子总能量小于势垒高度,入射粒子仍可能穿过势垒进入可能穿过势垒进入 III 区区 隧道效应隧道效应E第16章量子物理基础(3) 透射系数透射系数T 随势垒宽度随势垒宽度a、粒子质量、粒子质量m 和能量差变化,和能量差变化, 随着势垒随着势垒的的加宽、加高透射系数减小。加宽、加高透射系数减小。 粒子类型粒子类型粒子能量粒子能量势垒高度势垒高度 势垒宽度势垒宽度透射系数透射系数电子电子1eV2eV1eV2eV1eV2eV210-10m五五. .一维谐振子一维谐振子1.1.势能函数势能函数2222121)(x

30、mkxxUm 振子质量,振子质量, 固有频率固有频率,x 位移位移510-10m210-10m质子质子310-38第16章量子物理基础2.2.定态薛定谔方程定态薛定谔方程3.3.能量量子化能量量子化) , 2 , 1 , 0( )21( nhnEn0)()21(2)( 222xxmEmx普朗克量子化假设普朗克量子化假设 En=nhv E0= 0说明说明量子力学结果量子力学结果 En=(n+1/2)hv E0= hv/2 零点零点能能第16章量子物理基础六六. .氢原子氢原子02)(2222222VEmzyxreV024球坐标的定态薛定谔方程球坐标的定态薛定谔方程0)4(2sin1)(sinsi

31、n1)(10222222222reEmrrrrrr第16章量子物理基础1. 能量量子化能量量子化 能量能量主量子数主量子数 n = 1 ,2 ,3 ,电子云电子云mr101105290 .124rr 139rr 2122042)8(1nEhmenEn电子在这些地方出现电子在这些地方出现的概率最大的概率最大电子云密度电子云密度 概率密度概率密度nlm2(r, ) 玻尔氢原子理论中,电子的轨道位置玻尔氢原子理论中,电子的轨道位置第16章量子物理基础2. 角动量量子化角动量量子化 角量子数角量子数 l = 0 ,1 ,2 , , n-1) 1( llL3. 角动量空间量子化角动量空间量子化 电子绕核

32、转动的角动量电子绕核转动的角动量 L 的大小的大小角动量角动量 L 的在外磁场方向的在外磁场方向Z 的投影的投影lzmL 磁量子数磁量子数 ml = 0 , 1 , 2 , , l 第16章量子物理基础2206L2l2 1Ll磁量子数磁量子数 ml = 0 , 1 , 2L 在在 Z 方向的投影方向的投影2, 0,2zLz6) 12(2LL 的大小的大小例如例如 l = 2 电子角动量的大小及空间取向电子角动量的大小及空间取向 ?z0第16章量子物理基础(1) 实验现象实验现象v0v0 +vv0 -v光源处于磁场中时光源处于磁场中时,一条谱线会分裂,一条谱线会分裂成若干条谱线成若干条谱线光源e

33、LLmee2BllezezmmmeLme)(22z 轴(外磁场方向)投影轴(外磁场方向)投影B 玻尔磁玻尔磁子子摄谱仪磁磁矩矩磁矩和角动量的磁矩和角动量的关系关系(2) 解释解释NS4. 塞曼效应塞曼效应 磁场作用下的原子附加能量磁场作用下的原子附加能量z第16章量子物理基础BBEz由于磁场作用由于磁场作用, 原子附加能原子附加能量为量为 其中其中 ml = 0, 1, 2, , lBmBl 能能 级级 简简 并并 l = 1l = 0ml10-1EBBBB0v0v0v0+vv0-v无磁场无磁场有磁场有磁场0 0 能级分裂能级分裂第16章量子物理基础取离散值取离散值SNFSNz一一. 斯特恩斯特恩革拉赫实验革拉赫实验16.7 电子自旋电子自旋 四个量子数四个量子数zBFZdd第16章量子物理基础F 取取分分立立的的值值分分立立的的沉沉积积线线Z 取取分分立立的的值值zBFzdd 空空间间量量子子化化Lmee2空空间间量量子子化化角角动动量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论