下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、大学物理竞赛选拔试卷1.(本题 6 分)一长度为 I 的轻质细杆,两端各固结一个小球A、B (见图),它们平放在光滑水平面上。另有一小球D,以垂直于杆身的初速度vo与杆端的A球作弹性碰撞.设三球质量同为m,求:碰后(球A和B)以及 D 球的运动情况.2.(本题 6 分)质量 m =10 kg、长 I =40 cm 的链条,放在光滑的水平桌面 上,其一端系一细绳,通过滑轮悬挂着质量为 m!=10 kg 的物体,如图所示.=0 时,系统从静止开始运动,这时 li= I2=20 cm T2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求 热机能输出的最大功 Am
2、ax.5.(本题 6 分) 如图所示, 123415641 为某种一定量的理想气体进行的一个循 环过程,它是由一个卡诺正循环 12341 和一个卡诺逆循环 15641 组成.已知等温线温度比 T1/ T2= 4,卡诺正逆循环曲线所包围面积大小之比为S1/ S2= 2 .求循环 123415641 的效率.6.(本题 6 分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热同时,暖气系统的水又作为热机的冷却水.若燃烧 1kg 燃料,锅炉能获得的热量为H,锅炉、地下水、暖气系统的水的
3、温度分别为210C,15C,60C.设热机及热泵均是可逆卡诺机 .试问每燃烧 1kg 燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7.(本题 5 分)如图所示,原点 O 是波源动方向垂直于纸面,波长是 时无相位突变 二 O 点位于 A 点的正上方,AO =h. Ox 轴平行于 AB.求 Ox 轴上干涉加强点的坐标(限于 x 0).AB . AB 为波的反射平面,反射8.(本题 6 分) 一弦线的左端系于音叉的一臂的A 点上,右端固定在 B 点,并用 T =7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50 次的简谐振动(如图).这样,在弦线上产生了入
4、射波和反射波,并形成了驻波.弦的线密度 =2.0 g/m ,弦线上的质点离开其平衡位置的最大位移为4cm .在 t = 0 时,0 点处的质点经过其平衡位置向下运动,0、B 之间的距离为 L = 2.1 m .试求:(1)入射波和反射波的表达式;(2)驻波的表达式.9.(本题 6 分)用每毫米 300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长在 0.63 0.76范围内,蓝谱线波长在 0.43 0.49m 范围内.当光垂直入射到光栅时,发现在衍射角为 24.46处,红蓝两谱线同时出现.(1)在什么角度下红蓝两谱线还会同时出现?(2)在什么角度下只有红谱线出现?
5、-910.(本题 6 分)如图所示,用波长为 = 632.8 nm (1 nm = 10 m)的单色点光 源 S照射厚度为 e = 1.00 x10-5m、折射率为 n2= 1.50、半径为 R = 10.0 cm 的 圆形薄膜 F,点光源 S 与薄膜 F 的垂直距离为 d = 10.0 cm ,薄膜放在空气(折 射率 n1= 1.00)中,观察透射光的等倾干涉条纹. 问最多能看到几个亮纹?(注: 亮斑和亮环都是亮纹).11.(本题 6 分)7 50双筒望远镜的放大倍数为乙物镜直径为 50mm.据瑞利判据,这种望远镜的角分辨 率多大?设入射光波长为550nm.眼睛瞳孔的最大直径为 7.0mm.
6、求出眼睛对上述入射光的分辨率用得数除以 7,和望远镜的角分辨率对比,然后判断用这种望远镜观察时实际起分辨作用的是眼睛还 是望远镜.12.(本题 6分)一种利用电容器控制绝缘油液面的装置示意如图.平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高 度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电 路工作.已知极板的高度为 a,油的相对电容率为 幸,试求此电容器等效相 对电容率与液面高度 h 的关系.13.(本题 6 分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强O度的大小.螺旋线被限制在半径为R1和 R2的两圆之间,共 n 圈.提示:螺旋线
7、的极坐标方程为r= ab,其中 a, b 为待定系数X参考答案14.(本题 6 分)一边长为 a 的正方形线圈,在 t = 0 时正好从如图所示的均 匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B(如图),线圈的自感为 L,质量为 m,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时 间的关系.XXb,极长为 I,线圈平面与极板垂直, 若电容器极板电压为15.(本题 6 分)如图所示,有一圆形平行板空气电容器,板间距为 板间放一与板绝缘的矩形线圈.线圈高为h,一边与极板中心轴重合,另一边沿极板半径放置.U12=UmCOS;.-:t,求线圈电压 U 的大小.X16.(本题 6 分)在实验
8、室中测得电子的速度是的速率运动, 其方向与电子运动方向相同, 试求该观察者测出的电子的动能和动量是多少? (电子的静止 质量 m= 9.11X10J31kg)0.8c, c 为真空中的光速.假设一观察者相对实验室以0.6c17.(本题 6 分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于(1)求太阳辐射的总功率.(2)把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5X108km ,太阳的半径为 6.76X105km ,321.37X10 W/m.824二=5.67X10 W/(mK )18.(本题 6 分)已知氢原子的核外电子在1S态时其定态波函数为1_r /
9、a3,na100 - -e式中?imee(0= 8.85X10.试求沿径向找到电子的概率为最大时的位置坐标值.-122-1-2-34CNm,h = 6.626X10 J -S,me= 9.11-31X10 kg,e = 1.6X10-19C )X1, . l0 =mlvB=ml,() -Vc,得Vc(3)22(1)、(2)、(3)各式联立解出v=0;Vc号;晋。即碰后,D 球静止,刚体(球 A、B 及细杆)以速度 vc平移并绕通过质心的轴以角速度转动.刚体绕通过v ,设它们1.(本题 6 分)解:设碰后刚体质心的速度为 vC, 质心的轴的转动的角速度为 -,球 D 碰后的速度为 的方向如图所示
10、.因水平无外力,系统动量守恒:mv0=mv (2m)vC得:v0v =2vC(1)弹性碰撞,没有能量损耗,系统动能不变;1212121 l2 2mv0mv (2m)vC2m(),,得v22 2 2 2系统对任一定点的角动量守恒,选择与 A 球位置重合的定点计算. 碰后有角动量,有2-宀2vC/杆鬼/V2 二VMl2+-2A 和 D 碰撞前后角动量均为零, B 球只有(2)2 分1 分2.(本题 6 分)解:分别取 mi和链条 m 为研究对象,坐标如图.设链条在桌边悬挂部分为x.mig-T =mia,1T一xgm /丨=ma, 解出a=2g(1x/l)当链条刚刚全部滑到桌面时x = 0,a =g
11、= 4.9 m/s2dvdv d xdvav dtdx dtdx1vdv =-adx = _2g(1-x/l)dxv02vdv _ - g(1 _?)dxl3.(本题 6 分)解:(1)设摆球与细杆碰撞时速度为 vo,碰后细杆角速度为-,系统角动量守恒得:J = mvol1 分由于是弹性碰撞,所以单摆的动能变为细杆的转动动能1212一mv0J,1 分2 212代入 j= 一Ml2,由上述两式可得M = 3m1 分3(2)由机械能守恒式12121mv0= mgl及JMgl1-coS2 分2 2 21并利用(1)中所求得的关系可得v-arccos1 分34.(本题 6 分)解:设两物体达到的相同温
12、度为T,由热力学第一定律知A二Q1TQ2|=C仃1-T) -C(T -T2)=C( T2) -2CT1 分由熵的计算有TTT2- C InC lnC lnT1T2T1T22 分由熵增加原理知S 01 分T. T1T21 分将上式代入 A 的式子中得AWC(T1T22C T1T2Am aC(T1T22C.T1T21 分“Q1+Q25.(本题 6 分)解:=1r1 分Q1 gQ1与 Q2分别为 12341 循环中系统吸的热与放的热(绝对值),Q;与Q2分别为 15641 循环中系统放的热与吸的热(绝对值).又知T1/T:Q1/Q2= 4两边积分125 _1gl;/l =(3/4)gl2v= 1 .
13、3gl2=1.21 m/sQ1-Q2= 3二2S26.(本题 6 分)解:设锅炉、地下水以及暖气系统的温度分别以 系统之间的可逆卡诺热机的效率为HTi工作于地下水和暖气系统之间的热泵也是可逆卡诺机,同样有Q2_ T2Q3- Q2T3-T2即 乞=(5)i 分WT3-T2上式中的 W 为外界对热泵输入的功, 它全部由(3)式表示的可逆卡诺热机做的功提供,即W W,将(3)式代入(5)式,可得Q3JW二空TczT1H13 T2TiT3 _T2暖气系统从热机与热泵组合在一超的暖气设备得到的总热量为(4)式与(6)式之和可见这一将热机与热泵组合在一起的暖气设备称为动力暖气设备的供热是由锅炉直接供热的7
14、.(本题 6 分)解:沿 Ox 轴传播的波与从AB 面上 P 点反射来的波在坐标x 处相遇,两波的波程差为 =2 (x/2)2h2-x2 分Oxr*代入干涉加强的条件,有:h /x2 , (x/2)2h2-x =k,k = 1 , 2,1 分2 2 2 2 - 2x 4h x k2xkA. Bn22 q 22xk人=4h一k丸2 .224h -k丸2 分x -.2k2 2 2Qi-Q2 7i 分得Qi =:(8/3)S2Q2=(2/3)S2Qi匸:(4/3)S2Q2二(i/3)S2= i/3i 分1 分T1/T2g/Q2=4Ti, T2, T3,表示显然工作于锅炉和暖气热二1-T3按照热机效率
15、的定义Qi联立(i)式与W =H热H2 )式,可以得到Ti-T3HTi设可逆卡诺热机对暖气系统输送的热量为(1)i 分(6)电 +E Ti-T3lT TiT3 _T2斧+空汽空卜 3H1483 483 45 丿k = i, 2, 3,, 2 h /.(当 x = 0 时,由4h - k可得 k = 2 h /.) i 分2-IT-TT则其表达式为y|=Acos2曲t(X_L)I;B丸22庞y2=Acos2二、t (x-L)B九22 ITjr弦线上驻波表式为y = y,y2= 2Acos【一(x -L) -cosQ:、tBL cos2.tB2由L/,=7/4有y0- -2ACOS(2二vt J
16、= 2Acos(2二vtB-二)由式可知弦线上质点的最大位移为2A,即 2A = 4 cm,1,3再由题给条件可得式中B-,即屯二一二2 2=55.9 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.si n打=R/a b =0.207-1 = 11.91/28.(本题 6 分)解:按题意,弦线上行波的频率 = 50 Hz ,波速 u = (T/ )= 60 m/s,波长=1盲,取 O 点为 x 轴和 y 轴的原点.x 轴向右,y 轴向上.令入射波在 B 点的初相为Bu/.=1.2m.0.6 2反射波y2_2JTX兀1-2.0 10 cos100二t0.6 2(
17、SI)1 分驻波y2nx兀、=4.0 10 cos cos(100二t)(SI)1 分由此可得:二x二(SI)(1)入射波 屮=2.0 10,cos100:tB 点为固定点,则反射波的表达式为2y0=2Acos-据此,0 点振动方程为9.(本题 6 分)解:b) sin=k R=0.63 0.76Jm;对于红光,取 k=2 ,则对于蓝光,取 k=3,则(a +a+b= (1 / 300) mm = 3.33Jm k = (a + b) sin24.46 = 1.38mB= 0.43 0.49m红光最大级次取 kmax=4 则红光的第 4 级与蓝光的第sin=4R/a b 1=0.828R=0.
18、69JmB=0.46 mkmax= (a + b) / ?R=4.8,6 级还会重合.设重合处的衍射角为sin-3=3R/a b =0.621-3 = 38.46.328 10应取较小的整数,kmax= 47 (能看到的最高干涉级为第47 级亮斑).最外面的亮纹干涉级最低,为kmin,相应的入射角为 im= 45 (因 R=d),相应的折射角为 rm,据折射定律有n1s i rim= n2siiTm10.(本题 6 分)解:对于透射光等倾条纹的第k 级明纹有:2n2ecosr = k中心亮斑的干涉级最高,为kmax,其 r = 0,有:_52n2e 2 1.50 1.00 1047.4kmax
19、亠n1 .A1.00sin 45*orm二sin ( sinim)二sin= 28.13n21.50由2n2ecosm=kmin得:km i n =2n2eCOSrm2 150O10COS28.13= 41.86.328 10J应取较大的整数,最多能看到 6 个亮斑kmin= 42(第(能看到的最低干涉级为第42 级亮斑).42, 43, 44, 45, 46, 47 级亮斑).11.(本题 6 分)解:望远镜的角分辨率为通过此题可以对望远镜的分辨本领和人眼的分辨本领有一比较丄.22瞳孔的角分辨率为D1.22 - D1.22 550 1053rad =1.34 10rad50 101.22 5
20、50 10A3rad = 9.6 10rad7 10a:c=1.37 10rad7由于 订,所以用此望远镜时,角分辨率实际为人眼所限制,实际起分辨作用的还是眼睛12.(本题 6 分)解:设极板面积为 S,间距为 d,浸入油的 下部分的电容为CL-S;d a;0S;(;rd令等效相对电容率为; ;因此等效相对电容率为露在上面的部分的电容为C2a_ h0S.代入并联电容公式,-1)-1.as;S0S(;rdd=Cr-1)-1.a由上式看出,等效相对电容率随着液面的升高而线性增大,亦即电容器的电容将随液面的升高而线性增大;油本身的相对电容率牟愈大,对液面高度变化的反应愈为灵敏13.(本题 6 分)
21、解:螺旋线上电流元I dl在中心O 处产生的磁场为dB二0dl r其数值为dBIdlsin:由图可见由螺线方程dB4兀r2dI sin:二rdJr = ab dr = ad匕四B -R4兀aroI drarIn4二a R1螺线共 n 匝dvO时,时,R2R1a =2n二r二 珂a,b尹二 bzabR2R1r = R2=a 日 +b0nlBln2 R2_R10nl14.(本题 6 分)解:电动势=Bav - LIR dtR =0 ,在重力与磁力作用下线圈的运动两边同时对 t 微分:d2vm 2dt2d2vdt2vdvm mg BaI dtDdI-Ba dt2 2B amLt = 0 时,v = 0二As i n (t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规自我检测试卷A卷附答案
- 2023年剧装道具相关工艺美术品资金筹措计划书
- 2019年度城市活力研究报告
- 生意转让合同协议
- 2024年个人租车业务协议范本
- 智慧体育馆信息化管理平台建设方案
- 二手房购买预定金协议范本2024
- 2024年商业股权转让协议格式
- 2024人力培训服务外包代理协议
- 文书模板-《惠农信息员实习合同》
- 土默特右旗四道沟矿业有限责任公司四道沟煤矿2023年度矿山地质环境治理与土地复垦计划书
- 中小学教师数据素养五个专题作业
- 假如我是班主任-高中主题班会课件
- 语文部编版六上语文17第一课时《浪淘沙》(其一)课件
- 黑布林阅读初一10《霍莉的新朋友》英文版
- 高一第一学期期中考试及家长会教学课件
- 教师心理健康及其维护培训课件PPT
- 内镜下粘膜剥离术-课件
- 华夏航空股份有限公司
- 战略采购基础及7步战略采购法课件
- ic m710说明书中文版
评论
0/150
提交评论