各种分布白噪声的产生_第1页
各种分布白噪声的产生_第2页
各种分布白噪声的产生_第3页
各种分布白噪声的产生_第4页
各种分布白噪声的产生_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-3-29哈尔滨工业大学电子工程系13、各种分布白噪声的产生、各种分布白噪声的产生均匀分布白噪声的产生均匀分布白噪声的产生1、物理方法、物理方法2、数学方法、数学方法线性同余法线性同余法、联合法联合法、反馈位移寄存器法反馈位移寄存器法非均匀分布白噪声的产生非均匀分布白噪声的产生1、理论方法、理论方法反变换法反变换法、舍选抽样法舍选抽样法、复合法复合法、变换法变换法、查表法查表法2、常用的连续分布及其产生、常用的连续分布及其产生均匀分布均匀分布、指数分布指数分布、 正态分布正态分布、 对数正态分布对数正态分布、威布尔分布威布尔分布、瑞利分布瑞利分布3、常用的离散分布及其产生、常用的离散分

2、布及其产生伯努利分布伯努利分布、离散均匀分布离散均匀分布、几何分布几何分布、泊松分布泊松分布方再根,方再根,计算机模拟和蒙特卡洛方法计算机模拟和蒙特卡洛方法,北京工业学院出版社,北京工业学院出版社,1988.6Wolfgang Hormann et al, Automatic Nonuniform Random Variate Generation, Springer, 2004J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd Ed, Springer, 2003A.M. Law, Simulation Mod

3、elling and Analysis, 3rd Ed, McGraw-Hill, 2000Tezuka, Shu, Uniform random numbers theory and practice, Kluwer Academic Publishers, 1995Dagpunar, John., Principles of random variate generation, Oxford : Clarendon Pr., 1988Devroye, Luc., Non-uniform random variate generation, New York : Springer-Verla

4、g, c1986上述图书上述图书集中讨论不同分布随机数集中讨论不同分布随机数(白噪声)(白噪声)的产生的产生,系统而全面。,系统而全面。主要参考图书主要参考图书蒙特卡洛方法的实现步骤蒙特卡洛方法的实现步骤1、构造或描述概率过程、构造或描述概率过程2、实现从已知概率分布抽样、实现从已知概率分布抽样 由于各种概率模型都可以看作是由各种各样的概率分布构成的,因由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量)就成为实现蒙特卡罗方此产生已知概率分布的随机变量(或随机向量)就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。

5、法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。3、建立各种估计量、建立各种估计量 具有各种分布随机序列的模拟是计算机模拟及系统仿真的基础,广具有各种分布随机序列的模拟是计算机模拟及系统仿真的基础,广泛地应用于雷达、通信、声呐、机械振动、核物理、自动控制、金融分泛地应用于雷达、通信、声呐、机械振动、核物理、自动控制、金融分析、数值计算、贝叶斯统计等许多领域,例如雷达析、数值计算、贝叶斯统计等许多领域,例如雷达/声呐回波中的杂波和声呐回波中的杂波和噪声的模拟、机械振动噪声的模拟、随机测量误差的模拟等。噪声的模拟、机械振动噪声的模拟、随机测量误差的模拟等。各种分布白噪声产生的重要性各

6、种分布白噪声产生的重要性2022-3-29哈尔滨工业大学电子工程系4均匀分布白噪声的产生均匀分布白噪声的产生 快速产生统计性质优良的快速产生统计性质优良的均匀随机数均匀随机数是计算机模拟的基础,其是计算机模拟的基础,其他的非均匀分布都可将均匀分布通过非线性变换得到的。他的非均匀分布都可将均匀分布通过非线性变换得到的。 物理方法物理方法真随机数真随机数 所谓物理方法就是在电子计算机上装一台物理随机数发生器,所谓物理方法就是在电子计算机上装一台物理随机数发生器,它是把它是把具有随机性质的物理过程具有随机性质的物理过程直接在机器上变换为随机数字。例直接在机器上变换为随机数字。例如:以放射性物质为随机

7、源的放射型随机数发生器、以电子管或晶如:以放射性物质为随机源的放射型随机数发生器、以电子管或晶体的固有噪声为随机源的随机数发生器。主要的物理方法有:体的固有噪声为随机源的随机数发生器。主要的物理方法有:放射性物质放射性物质、电子管或晶体管噪声电子管或晶体管噪声、锁相环噪声源锁相环噪声源、量子模型量子模型、混混沌模型沌模型特点:特点:可以在计算机上得到可以在计算机上得到真正的随机数真正的随机数,但是它带来了新的问题。,但是它带来了新的问题。由于这种随机过程是一去不复返的,由于这种随机过程是一去不复返的,不能重复出现不能重复出现,因此就无法再,因此就无法再用原来的随机数进行试算用原来的随机数进行试

8、算、检查检查或对比分析或对比分析,并且,并且对设备要求较高对设备要求较高,从而大大降低了这类方法的使用价值。从而大大降低了这类方法的使用价值。2022-3-29哈尔滨工业大学电子工程系5数学方法数学方法伪随机数伪随机数 在计算机上用数学方法产生随机数,是目前使用较广,发展较快在计算机上用数学方法产生随机数,是目前使用较广,发展较快的一种方法。它利用的一种方法。它利用数学递推公式数学递推公式来产生随机数,通常把这样得到的来产生随机数,通常把这样得到的随机数称为伪随机数。随机数称为伪随机数。 由于这种方法属于半经验性质,只能近似地具备随机性质。但是由于这种方法属于半经验性质,只能近似地具备随机性质

9、。但是只要产生伪随机数的递推公式选得较好,由此产生的随机数序列的独只要产生伪随机数的递推公式选得较好,由此产生的随机数序列的独立性是可以近似得到满足的。而且只要公式的参数选得适当,就可以立性是可以近似得到满足的。而且只要公式的参数选得适当,就可以保证所得到的随机数保证所得到的随机数循环周期有足够长循环周期有足够长。若所使用的随机数总数不超。若所使用的随机数总数不超过伪随机数序列的循环周期时,使用要求即可得到满足。理论定量分过伪随机数序列的循环周期时,使用要求即可得到满足。理论定量分析结果表明,为保证随机数学期望的最大容量(对应循环周期)、独析结果表明,为保证随机数学期望的最大容量(对应循环周期

10、)、独立性及均匀性,递推公式及其有关参数的正确选择是极为重要的。立性及均匀性,递推公式及其有关参数的正确选择是极为重要的。均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数1、线性同余法、线性同余法 (Linear Congruential Generators)式中式中 、 、 均为正整数,初值均为正整数,初值 (亦称种子数)(亦称种子数) , 为乘子为乘子 时为时为乘同余法乘同余法, 时为时为混合同余法混合同余法1962年年Hull和和Dobell给出了混合同余法达到最大周期给出了混合同余法达到最大周期T=m的充要条件:的充要条件:() c与与m互素;互素;() 对对

11、m的任意素因子的任意素因子p中,有中,有a1 (mod p)()若若4是是m的因子,则的因子,则a1 (mod 4) 一般采用一般采用m=2k混合同混合同余法,则由以上条件可得最大周期余法,则由以上条件可得最大周期发生器发生器为:为:式中式中a、b为任意正整数为任意正整数2022-3-29哈尔滨工业大学电子工程系6均匀分布白噪声的产生均匀分布白噪声的产生) (mod 1mcaxxiiixac0 xa0c0c)2 (mod ) 12() 14(1kiibxax2022-3-29哈尔滨工业大学电子工程系7均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数1、线性同余法、线性同

12、余法(Linear Congruential Generators)均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数1、线性同余法、线性同余法(Linear Congruential Generators) 均匀分布均匀分布U0, 1随机数的产生:随机数的产生:yi=ayi-1+1 (mod 231)式中乘子式中乘子a取前面优选的取前面优选的15种数值中任一个,种子数种数值中任一个,种子数y0 0 任选。任选。 令令ri=yi/231,则,则R就是就是0, 1上的均匀分布随机数上的均匀分布随机数。BASIC、C、MATLAB中均有产生均匀分布随机数的函数可调用:中均有产

13、生均匀分布随机数的函数可调用:RND()、RAND()、UNIFRND() 2022-3-29哈尔滨工业大学电子工程系8均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数2、联合法、联合法(组合发生器)(组合发生器) 混和同余法实际上是通过同余等运算打乱数列混和同余法实际上是通过同余等运算打乱数列0,1,m-1的次的次序,来达到产生随机序列的目的。序,来达到产生随机序列的目的。“打乱数列的次使之排列无规则打乱数列的次使之排列无规则”是是设计发生器的一个可依据的原则,基于此产生联合法:设计发生器的一个可依据的原则,基于此产生联合法:(1) 两个发生器的组合两个发生器的组合

14、Greenwood在在1976年对两个混合同余法发生器使用组合方法,且两年对两个混合同余法发生器使用组合方法,且两个发生器的模都简单地取成个发生器的模都简单地取成2k,使组合后的发生器周期达到,使组合后的发生器周期达到2k(2k-1)。 (2) n个发生器的组合个发生器的组合 Salfi于于1974年提出了一个较好的算法。年提出了一个较好的算法。注:注:组合发生器并非先产生一些序列再将它们组合起来,而是在组合过程中,用到时再组合发生器并非先产生一些序列再将它们组合起来,而是在组合过程中,用到时再产生。基于产生。基于“打乱次序打乱次序”原则,也可以用单个发生器产生的随机数打乱同一发生器的输原则,

15、也可以用单个发生器产生的随机数打乱同一发生器的输出序列,对此出序列,对此Bays和和Durham在在1976年提出一个算法。年提出一个算法。 2022-3-29哈尔滨工业大学电子工程系92022-3-29哈尔滨工业大学电子工程系10均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数3、反馈位移寄存器法、反馈位移寄存器法(FSR:Feedback Shift Register) 实验表明用同余发生器得到的随机数构造的随机向量序列经常有明实验表明用同余发生器得到的随机数构造的随机向量序列经常有明显的规律性。显的规律性。1965年年Tausworthe提出用模提出用模2线性循环

16、产生均匀随机数线性循环产生均匀随机数的方法。的方法。Toothill,Robinson和和Adams于于1971年给出了年给出了FSR发生器的发生器的另一种描述方法,适用于编制程序。另一种描述方法,适用于编制程序。 FSR法的优点在于法的优点在于算法简单,所产生随机数与具体的计算机及其字算法简单,所产生随机数与具体的计算机及其字长无关长无关。应用实例应用实例:雷达相位编码信号的产生(伪随机码):雷达相位编码信号的产生(伪随机码)2022-3-29哈尔滨工业大学电子工程系11 n级线性移位寄存器的输出序列是一个周期序列,其最大可能周级线性移位寄存器的输出序列是一个周期序列,其最大可能周期是期是N

17、=2n-1,这样的序列称为,这样的序列称为最大长度序列最大长度序列或或M序列序列,其中,其中1元素比元素比0元素的个数多元素的个数多1,即,即0、1的个数分为的个数分为(N-1)/2、(N+1)/2。 考虑如上图所示的三级线性反馈移位寄存器,初始状态设为考虑如上图所示的三级线性反馈移位寄存器,初始状态设为111,则输出则输出M序列为序列为1110010,长度为,长度为N=23-1=7。注:注:线性移位寄存器的初始状态不能全为零。线性移位寄存器的初始状态不能全为零。1级级2级级3级级输出输出三级线性反馈移位寄存器三级线性反馈移位寄存器模模2加法器加法器均匀分布白噪声的产生均匀分布白噪声的产生数学

18、方法数学方法伪随机数伪随机数3、反馈位移寄存器法、反馈位移寄存器法(FSR:Feedback Shift Register)2022-3-29哈尔滨工业大学电子工程系12均匀分布白噪声的产生均匀分布白噪声的产生数学方法数学方法伪随机数伪随机数3、反馈位移寄存器法、反馈位移寄存器法(FSR:Feedback Shift Register)1x2x1nxnx) , , ,(21nxxxf n级级线性移位寄存器的线性移位寄存器的反馈函数反馈函数、特征函数特征函数可定义为:可定义为:式式中中ci=0或或1,反馈函数或特征函数完全刻划了对应的,反馈函数或特征函数完全刻划了对应的线性移位寄存器的反馈功能。

19、线性移位寄存器的反馈功能。 理论上,为了产生理论上,为了产生M序列,设计线性移位寄存器的问题在原则上可归结序列,设计线性移位寄存器的问题在原则上可归结为找本原多项式的问题。目前对于为找本原多项式的问题。目前对于n=168的的本原多项式本原多项式已有表可查。已有表可查。丁石孙,丁石孙,线性移位寄存器序列线性移位寄存器序列,上海科学技术出版社,上海科学技术出版社,1982niiinxcxxxf121) , , ,(niiicf1 )(2022-3-29哈尔滨工业大学电子工程系13非均匀分布白噪声的产生非均匀分布白噪声的产生理论方法理论方法以以均匀分布随机数均匀分布随机数r U0, 1为基础为基础1

20、、反变换法、反变换法 (inversion method) 由已知的分布函数由已知的分布函数r = F(x)反过来求反过来求x。用反变换法产生随机数时,。用反变换法产生随机数时,如果如果F-1(x)没有解析形式,或者没有解析形式,或者F(x)就没有解析形式,则可以用就没有解析形式,则可以用F-1(x)的的近似公式代替近似公式代替。 以以0, 1均匀分布随机数均匀分布随机数r为基础,所有分布随机数都可通过为基础,所有分布随机数都可通过计算或计算或近似计算其分布函数的反函数,用反变换法或查表法等方法产生。近似计算其分布函数的反函数,用反变换法或查表法等方法产生。2022-3-29哈尔滨工业大学电子

21、工程系14非均匀分布白噪声的产生非均匀分布白噪声的产生理论方法理论方法以以均匀分布随机数均匀分布随机数r U0, 1为基础为基础2、舍选抽样法、舍选抽样法 (rejection method) 1951年,冯年,冯诺依曼诺依曼(Von Neuman)提出用舍选抽样法产生随机数。提出用舍选抽样法产生随机数。但有时此法效率很低,为提高抽样效率,在此基础上产生了推广的舍选但有时此法效率很低,为提高抽样效率,在此基础上产生了推广的舍选抽样法。抽样法。该方法该方法直观图示直观图示如下:如下: 2022-3-29哈尔滨工业大学电子工程系15非均匀分布白噪声的产生非均匀分布白噪声的产生理论方法理论方法以以均

22、匀分布随机数均匀分布随机数r U0, 1为基础为基础2、舍选抽样法、舍选抽样法 (rejection method)该方法该方法计算机实现过程计算机实现过程如下:如下: 非均匀分布白噪声的产生非均匀分布白噪声的产生理论方法理论方法以以均匀分布随机数均匀分布随机数r U0, 1为基础为基础3、复合法、复合法 (composition method) 1961年马萨格里亚年马萨格里亚(Marsaglia)提出用复合法产生非均匀随机数。此提出用复合法产生非均匀随机数。此法相当于先将密度函数曲线下的面积分解为几个部分,然后以各部分面法相当于先将密度函数曲线下的面积分解为几个部分,然后以各部分面积值表示

23、的概率去产生相应各部分密度函数的随机数,即积值表示的概率去产生相应各部分密度函数的随机数,即F(x) = pi Fi(x)4、变换法、变换法 利用变换关系从一种分布的随机数产生另一种分布的随机数,前述利用变换关系从一种分布的随机数产生另一种分布的随机数,前述的的反变换法是此法特例反变换法是此法特例。 设设Y = g(X),其反函数为,其反函数为X = g-1(Y) = h(Y),则所得随机变量,则所得随机变量Y的概的概率密度函数为:率密度函数为:fY(y) = fXh(y) |h(y)|式中式中fX(x)为随机变量为随机变量X的概率密度函数,上标撇号表示一阶导数。如果的概率密度函数,上标撇号表

24、示一阶导数。如果取取Y=r U0, 1,函数,函数g()为随机变量为随机变量X的概率分布函数的概率分布函数F(),则函数,则函数h()=F-1(),此即反变换法。,此即反变换法。 2022-3-29哈尔滨工业大学电子工程系17非均匀分布白噪声的产生非均匀分布白噪声的产生理论方法理论方法以以均匀分布随机数均匀分布随机数r U0, 1为基础为基础5、查表法、查表法 将连续概率分布以离散分布逼近,则查表法可用来产生连续随机将连续概率分布以离散分布逼近,则查表法可用来产生连续随机数。此法优点是计算速度很快,缺点是连续分布函数离散化引入误差。数。此法优点是计算速度很快,缺点是连续分布函数离散化引入误差。

25、)(xf)(xF5.01xx2022-3-29哈尔滨工业大学电子工程系18非均匀分布白噪声的产生非均匀分布白噪声的产生常用的连续分布及其产生常用的连续分布及其产生假设假设随机数随机数r U0, 1已产生已产生1、均匀分布、均匀分布Ua, b Uniform Distribution2022-3-29哈尔滨工业大学电子工程系19非均匀分布白噪声的产生非均匀分布白噪声的产生常用的连续分布及其产生常用的连续分布及其产生假设假设随机数随机数r U0, 1已产生已产生2、指数分布、指数分布E() Exponential Distribution扩展:扩展:双指数分布、超指数分布、截尾指数分布双指数分布、

26、超指数分布、截尾指数分布2022-3-29哈尔滨工业大学电子工程系20非均匀分布白噪声的产生非均匀分布白噪声的产生常用的连续分布及其产生常用的连续分布及其产生假设假设随机数随机数r U0, 1已产生已产生3、正态分布、正态分布N(, 2) Normal/Gaussian Distribution2022-3-29哈尔滨工业大学电子工程系21非均匀分布白噪声的产生非均匀分布白噪声的产生常用的连续分布及其产生常用的连续分布及其产生假设假设随机数随机数r U0, 1已产生已产生3、正态分布、正态分布N(, 2)2022-3-29哈尔滨工业大学电子工程系22非均匀分布白噪声的产生非均匀分布白噪声的产生常用的连续分布及其产生常用的连续分布及其产生假设假设随机数随机数r U0, 1已产生已产生4、对数正态分布、对数正态分布LN(, 2) Log-Normal Distribution非均匀分布白

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论