工程数学线性代数第一章_第1页
工程数学线性代数第一章_第2页
工程数学线性代数第一章_第3页
工程数学线性代数第一章_第4页
工程数学线性代数第一章_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在初等数学中在初等数学中, ,我们用代入消元法或加减消元我们用代入消元法或加减消元法求解二元和三元线性方程组,可以看出,线性法求解二元和三元线性方程组,可以看出,线性方程组的解完全由未知量的系数与常数项所确定方程组的解完全由未知量的系数与常数项所确定为了更清楚地表达线性方程组的解与未知量的系为了更清楚地表达线性方程组的解与未知量的系数和常数项的关系,我们在本章先引入二阶和三数和常数项的关系,我们在本章先引入二阶和三阶行列式的概念,并在二阶和三阶行列式的基础阶行列式的概念,并在二阶和三阶行列式的基础上,给出上,给出 n n 阶行列式的定义并讨论其性质,进而阶行列式的定义并讨论其性质,进而把把 n

2、 n 阶行列式应用于解阶行列式应用于解 n n 元线性方程组元线性方程组行列式是一种常用的数学工具,在数学及其他学科行列式是一种常用的数学工具,在数学及其他学科中都有着广泛的应用中都有着广泛的应用用消元法解二元线性方程组用消元法解二元线性方程组 .,22221211212111bxaxabxaxa 1 2 :122a ,2212221212211abxaaxaa :212a ,1222221212112abxaaxaa ,得,得两式相减消去两式相减消去2x一、二阶行列式的引入一、二阶行列式的引入;212221121122211baabxaaaa )(,得,得类似地,消去类似地,消去1x,211

3、211221122211abbaxaaaa )(时,时,当当021122211 aaaa方程组的解为方程组的解为,211222112122211aaaabaabx )(3.211222112112112aaaaabbax 由方程组的四个系数确定由方程组的四个系数确定. 由四个数排成二行二列(横排称行、竖排由四个数排成二行二列(横排称行、竖排称列)的数表称列)的数表)4(22211211aaaa)5(42221121121122211aaaaaaaa行行列列式式,并并记记作作)所所确确定定的的二二阶阶称称为为数数表表(表表达达式式 即即.2112221122211211aaaaaaaaD 11a

4、12a22a12a主对角线主对角线副对角线副对角线2211aa .2112aa 二阶行列式的计算二阶行列式的计算若记若记,22211211aaaaD .,22221211212111bxaxabxaxa对于二元线性方程组对于二元线性方程组系数行列式系数行列式 .,22221211212111bxaxabxaxa,22211211aaaaD .,22221211212111bxaxabxaxa,2221211ababD .,22221211212111bxaxabxaxa,22211211aaaaD .,22221211212111bxaxabxaxa,2221211ababD .,222212

5、11212111bxaxabxaxa.2211112babaD 则二元线性方程组的解为则二元线性方程组的解为,2221121122212111aaaaababDDx 注意注意 分母都为原方程组的系数行列式分母都为原方程组的系数行列式.2221121122111122aaaababaDDx . 12,12232121xxxx求解二元线性方程组求解二元线性方程组解解1223 D)4(3 , 07 112121 D,14 121232 D,21 DDx11 , 2714 DDx22 . 3721 二、三阶行列式二、三阶行列式333231232221131211)5(339aaaaaaaaa列的数表列

6、的数表行行个数排成个数排成设有设有,312213332112322311322113312312332211)6(aaaaaaaaaaaaaaaaaa 333231232221131211aaaaaaaaa(6 6)式称为数表()式称为数表(5 5)所确定的三阶行列式)所确定的三阶行列式. .323122211211aaaaaa .312213332112322311aaaaaaaaa (1)(1)沙路法沙路法三阶行列式的计算三阶行列式的计算322113312312332211aaaaaaaaa D333231232221131211aaaaaaaaaD . .列标列标行标行标33323123

7、2221131211aaaaaaaaaD 333231232221131211aaaaaaaaa332211aaa .322311aaa 注意注意 红线上三元素的乘积冠以正号,蓝线上三红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号元素的乘积冠以负号说明说明1 对角线法则只适用于二阶与三阶行列式对角线法则只适用于二阶与三阶行列式322113aaa 312312aaa 312213aaa 332112aaa 如果三元线性方程组如果三元线性方程组 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa的系数行列式的系数行列式33323123

8、2221131211aaaaaaaaaD , 0 利用三阶行列式求解三元线性方程组利用三阶行列式求解三元线性方程组 2. 2. 三阶行列式包括三阶行列式包括3!3!项项, ,每一项都是位于不同行每一项都是位于不同行, ,不同列的三个元素的乘积不同列的三个元素的乘积, ,其中三项为正其中三项为正, ,三项为三项为负负. . ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabD 若记若记333231232221131211aaaaaaaaaD 或或 121bbb ;,333323213123

9、232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabD 记记,3332323222131211aabaabaabD 即即 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaaD ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD 得得 ;,333323213123232221211313212111bx

10、axaxabxaxaxabxaxaxa333231232221131211aaaaaaaaaD ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD 得得 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa.3323122221112113baabaabaaD ,3333123221131112abaabaabaD .3323122221112113baabaabaaD 则三元线性方程组的解为则三元线性方程组的解为:,11DDx ,

11、22DDx .33DDx 333231232221131211aaaaaaaaaD ,3332323222131211aabaabaabD 2-43-122-4-21D 计算三阶行列式计算三阶行列式按对角线法则,有按对角线法则,有 D4)2()4()3(12)2(21 )3(2)4()2()2(2411 24843264 .14 . 094321112 xx求解方程求解方程方程左端方程左端1229184322 xxxxD, 652 xx2560 xx由解得3.2 xx或或例例4 4 解线性方程组解线性方程组 . 0, 132, 22321321321xxxxxxxxx由于方程组的系数行列式由于

12、方程组的系数行列式111312121 D 111 132 121 111 122 131 5 , 0 同理可得同理可得1103111221 D, 5 1013121212 D,10 0111122213 D, 5 故方程组的解为故方程组的解为:, 111 DDx, 222 DDx. 133 DDx 二阶和三阶行列式是由解二元和三元线性方二阶和三阶行列式是由解二元和三元线性方程组引入的程组引入的.对角线法则对角线法则二阶与三阶行列式的计算二阶与三阶行列式的计算.2112221122211211aaaaaaaa ,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa 333231232221131211aaaaaaaaa三、小结三、小结 使使求一个二次多项式求一个二次多项式,xf .283, 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论