




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学一轮复习第十章立体几何初步第68课直线与平面平行教案一、教学目标i.借助手中的笔与课本,让学生直观感受直线与平面平行的位置关系,并能够用图形来表示,进一步培养学生的空间想象能力;2 .理解并掌握直线与平面平行的判定定理和性质定理,能运用其解决有关问题;3 .通过运用两个定理解决有关问题,是学生感受化归的数学思想,培养学生数学地分析问题、解决问题的能力.二、基础知识回顾与梳理【回顾要求】1 :阅读必修二第32-34页完成以下任务:八/位直大系直线在平囿内直线与相交直线与平面平行公共点付万表/、图形表小其中与统称直线在平面外.2 .直线和平面平行的判定理与性质定理;(1)直线和平面平行的判
2、定理:一条直线与的一条直线平行,则该直线与此平面平行,用符号表示为.用图形表示为:(2).直线和平面平行的性质定理:一条直线与一个,则过这条直线的任一平面与此平面的与该.用符号表示为:?aIIb.用图形表不为:【要点解析】1.线面平行,线面相交,线在面内是通过公共点个数定义.2:利用直线和平面平行的判定定理来证明线面平行,关键是寻找平面内与已知直线平行的直线,把握几何体的结构特征,合理利用几何体中的三角形的中位线,平行四边形对边平行等平面图形的特点找线线平行关系是常用方法.同时线面平行的位置关系是最基本的位置,证明方法当然是用线面平行的判定定理,但更多的情况下,用面面平行的性质定理反而方便.3
3、:一要熟练掌握所有判定定理与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行.而证明线线平行常用的是三角形中位线性质,或构造平行四边形;二要用分析与综合相结合的方法来寻找证明的思路;三要注意表述规范,推理严谨,避免使用一些虽然正确但不能作为推理依据的结论.4本节内容是高考考查的重点内容,主要以考查线面平行、面面平行为主,试题主要分两大类:一类是空间中线面平行、面面平行的判断与证明;另一类是围绕平行的探究性问题.5解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的
4、条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.6:线面平行的判定,可供选用的定理有:若a/b,a?a,b?a,则a/a.若a/B,a?a,则a/B.(3)判定两平面平行,可供选用的定理有:若a,b?a,a,b相交,且a/B,b/B,则a/§.三、诊断练习1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏.课前抽查批阅部分同学的解答,了解学生的思路及主要错误.本课诊断练习4小题也可以当堂完成训练和讲评.2、结合课件点评.必要时借助实物投影仪,有针对地投影几位学生的解答过程.题1.在长方体ABCD-AB1C1D的侧面和底面所在的平面中(
5、1)与直线AB平行的平面是(2)与直线AC平行的平面是r【分析与点评】问题1:空间中直线与平面的位置关系有哪些?问题2:要找线面平行,只要找什么?答案:面CDD1cl和面AB1clD1,面AB1cD题2,已知不重合的直线a,b和平面”,若a/a,b?a,贝Ua/b;若a/a,b/a,贝Uallb;若a/b,b?a,贝Ua/a;若a/b,a/a,贝Ub/a或b?a,上面命题中正确的是(填序号).【分析与点评】借助实物(笔和课桌)让学生自己动手,摆放所有的可能性.通过最熟悉的几何体一长方体,让学生在图形中画出上述的几种情形,增强学生的空间想象力和读图能力.【答案】题3.如果直线a平行于平面,则平面
6、内有条直线与a平行.【分析与点评】问题1:空间中两条直线的位置关系有哪些?问题2:在内任意作一条直线b,由线面平行的定义知道直线a与直线b没有公共点,那么可以由此就断定a与b平行吗?【交流与讨论】1.关键词“任意”、“所有”、“无数”的区别.2.如果直线a垂直于平面,则平面内有条直线与a垂直.【答案】无数(交流与讨论中2的答案为“任意”或“所有”)题4.已知直线a,b,平面,且b,则“a/b”是“a/”的条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)【分析与点评】先引导学生回忆命题的充分性与必要性的定义.提出下列问题:1 .由“a/b”能推出“a/”吗?(直线a
7、与平面是怎样的位置关系)2 .由“a/”能推出“a/b”吗?3 .已知直线a,b,平面,且b,则“a/”是“a/b”的条件.【答案】既不充分也不必要3、要点归纳(1)判断命题正确与错误时,一般错误的命题只要举出反例,正确的命题要进行简单的证明。有时也可以借助特殊的几何体,如长方体、正四面体等模型,结合有关的概念加以判断.(如题2)(2)对于线线、线面的位置关系问题,考虑时一定要全面.(如题1、题3和题4)(3)要重视空间图形在解题中的作用,辅助分析,帮助理解.四、范例导析例1:在正方体ABCDA1B1C1D1中,棱长为a,M,N分别为AB和AC上的点,且AMANa.求证:MN/平面BBC1c;
8、求MN的长.【教学处理】要求学生认真审题,自己分析条件和结论的关系.建议多提问,让学生主动去发现问题,解决问题.【引导分析与精讲建议】第(1)问:【变式】在正方体ABCDABGD1中,M,N分别为AB和AC上的中点,求证:MN/平面BB1C1C.问题1.如何在平面BB1C1C中找到一条线与MN平行?教师指导:方法一:连结AB与BC,由正方体知M为AB1的中点,由中位线定理易得:MN/BC.(图1),由已知易证四边形方法二:取BC中点N',B1B中点M',连结NN'、MN'、M'N'.,.(图 2)MNNM为平行四边形,从而有:MN/MN(图1)(
9、图2)(图3)问题2.本题中,如何在平面BB1GC中找到一条线与MN平行?由第1问中万法二的启木可以作如下的辅助线:过N作NN/AB交BC于N,过M作'_._一'.'''MM/AB1交BB于M,连结MN,从而构造出平行四边形MNNM.(图3)第(2)问:由(1)中的证明可以知道MN=m'n',故只需要在正方形BBC1c中求得M'N的长度即可.【讨论交流】1.对于第(1)问,能否利用三角形构造出线线平行?试作出辅助线.2.能否尝试用面面平行去得线线平行呢?对比分析,那种方法更为简捷.【说明】在提出问题讨论交流后,可教师板书示范,也可
10、让学生练习、板演后点评.【小结】要证明线面平行关键是找线线平行,而构造线线平行的途径主要有三种:(1) 利用三角形的中位线定理;(2) 利用平行四边形;(3) 利用对应线段成比例.例2:如图,在四棱锥PABCDK底面是平彳T四边形,PL平面ABCD点MN分别为BCPA的中点.在线段PD上是否存在一点E,使NM/平面ACE若存在,t#确定点E的位置;P若不存在,请说明理由.【教学处理】要求学生独立思考并解题,指名学生板演,老师巡视指导了解学情;再结合板演情况进行点评.教师在点评过程中要强调解题过程的规范性.【引导分析与精讲建议】在正面无法入手时,老师可以引导学生从结论出发去寻找突破点.CB例2:
11、解在PD上存在一点E,使得NMF平面ACE证明如下:取PD的中点E,连接NEECAE因为N,E分别为PAPD的中点,一,I一1所以NEFF行且等于2AD.一.一,.1一一_一一边形MCE曜平行四边形.所以 NMf行且等于EC又在平行四边形ABCD,CMW丁且等于2AD所以NE平行且等于MC即四又EC?平面ACENM?平面ACE所以MIN/平面ACE即在PD上存在一点E,使得NM/平面ACEBAD 60BCD的重心,则在平面 ABC ,【变式】1:如图,四棱锥PABCD中,底面ABCD为菱形,E为CD中点,在PC上找一点F,使得PA/平面BEF.【教学处理】要求学生独立思考并解题,指名学生板演,
12、老师巡视指导了解学情;再结合板演情况进行点评.教师在点评过程中要强调解题过程的规范性.【引导分析与精讲建议】在正面无法入手时,老师可以引导学生从结论出发去寻找突破点.连结AC交BE于M,连结MF.(如图4)由PA/平面BEF,利用线面平行的性质定理可以得到MF/那么,现在要考虑的问题就是:将点F定在PC上什么位置,可以使得MF/PA呢?(【变式】A是BCD所在平面外一点,M,N分别是ACD,平面BCD,平面ACD,平面ABD中,与MN平行的是.例3.四棱锥PABCDK底面ABCM平行四边形,N是PB中点,过A,N,D三点的平面交PC于M(1)求证:PD/平面ANC(2)求证:M是PC中点.答案
13、为:证明(1)连接BDAC设BEAC=Q连接NQ.ABCD1平行四边形,Q是BD中点,在PBD43,又N是PB中点,.PD/NQ又NO?平面ANCPD?平面ANCPD/平面ANC(2)底面ABC时平行四边形,AD/BC又.BC?平面ADMNAD?平面ADMIN.BC/平面ADMN因平面PBCP平面ADMNMN.BC/MN又N是PB中点,M是PC中点.【教学处理】指导学生识图,标注条件,让学生先尝试思考分析。如,由平行四边形想到什么?中点?在思路交流环节,教师应设计针对性的问题引导学生去思考,通过问题示范思考方法,加深学生对方法的理解。此外,步骤必须重视并严格要求到位。【引导分析与精讲建议】、第
14、(1)问中证线面平行,是用平移构造辅助面?还是中心投影(即面外线+点构造三角形)形成辅助面?-面外线PD+岚B形成辅助面得到要找的交线!第2问:要证中点,已知什么,只要证什么?线面平行的性质定理的条件必须强化,让学生动手写。【备用题】:如图,已知四面体ABCD的四个面均为锐角三角形,E,F,G,H分别为AB,BC,CD,DA上的点,BD/平面EFGH,且EFFG.求证:HG【教学处理】指导学生识图,标注条件,让学生先尝试思考分析,教师延迟引导,最后由学生板演.【引导分析与精讲建议】本题中“线线平行"和"线面平行”关系比较多,学生可能容易混乱,在讲解过程中要让学生抓准已知的关系去推到未知的.证明过程中对线面平行的性质定理和判定定理要加以区分,定理的条件要全面准确.变式迁移如下图,三棱锥ABC徽一平面所截,截面为平行四边形EFGH求证:CD/平面EFGH【引导分析与精讲建议】问题1、如何证明线面平行(通过线线平行来证)问题2、锁定目标,直观看,你认为CM哪条线平行(GH问题3、GH那条直线有关?什么关系?可以进一步得到什么结论?问题4、GH面ACD可以得到什么结论。用了什么定理?说明:本题旨在强化线面平行的性质定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级下册数学教案- 拨一拨 北师大版
- 2025年中学职务岗位聘用合同
- 五年级下册数学教案-6.5 图形与几何(平面图形的周长和面积(复习)) ▏沪教版
- 人教版数学三年级上册单元练习卷(易错题)-第五单元-倍的认识(含答案)
- 2024年快速热处理设备项目资金筹措计划书代可行性研究报告
- 2024年灌装包装设备项目投资申请报告代可行性研究报告
- 2025年广西金融职业技术学院单招职业技能测试题库审定版
- 2025年贵州建设职业技术学院单招职业倾向性测试题库带答案
- 2025届黑龙江省“六校联盟”高三上学期联考生物试题及答案
- 别墅家装保障合同范本
- 人教版小学六年级下册音乐教案全册
- 12J201平屋面建筑构造图集(完整版)
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- 16J914-1 公用建筑卫生间
- 20CS03-1一体化预制泵站选用与安装一
- (完整版)四年级上册数学竖式计算题100题直接打印版
- 人教版八年级(上册)物理习题全集(附答案)
- 电影院影务岗位工作流程
- 毕业论文牛仔布染色工艺和质量控制
- 机器视觉论文(英文)
- 初中花城版八年级下册音乐6.军港之夜(15张)ppt课件
评论
0/150
提交评论