支持美国航天局地球科学事业的下一代海洋观测浮标--毕业设计外文翻译_第1页
支持美国航天局地球科学事业的下一代海洋观测浮标--毕业设计外文翻译_第2页
支持美国航天局地球科学事业的下一代海洋观测浮标--毕业设计外文翻译_第3页
支持美国航天局地球科学事业的下一代海洋观测浮标--毕业设计外文翻译_第4页
支持美国航天局地球科学事业的下一代海洋观测浮标--毕业设计外文翻译_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.上海海洋大学2012届毕业设计外文翻译 The Next Generation Ocean Observing Buoy in Support of NASAs译文:支持美国航天局地球科学事业的下一代海洋观测浮标简介伍兹霍尔海洋研究所与杰克逊和图尔正在开发一款改良版的支持美国航天局地球科学事业的系船测定浮标系统。此项新型设计运用了伍兹霍尔海洋研究所在浮标、系泊、传感系统方面的海洋经验,并结合了杰克逊和图尔在航空遥测和计算机系统方面的专长。浮标系统包括一整套气象传感器、水温、传导性(盐度)、生物光学传感器和辐射计在不同深度的性能,以及应用于海流的声学多普勒海流剖面仪。此系统可以对海洋科学研究在

2、全世界范围内的陆架区域进行部署调配,包括海洋水色卫星地面真实性验证。它将新一代近地轨道通信卫星(LEO)应用于两方面,高通量指挥控制和数据遥测。1.浮标结构这些美国航空局浮标系统由钢和一个铝制的泡沫浮圈制成。钢,用于低成本和简单的结构建造,它们被热镀锌,并且为了防止腐蚀而被涂层。一些旧的钢护浮标(潜水式有塔状物的网状浮子)在20年后仍然还在使用,所以其使用寿命不是问题。而且,基底用重钢棒线材制成可以减少同铝制浮标一样必须要增加锌制或铅制重物来进行压载。浮标塔由6061-T6铝材制成,因为这种材料轻,塑料垫圈可以使钢基底与电隔离。安装在塔上的有一个雷达反射器、闪光灯式海洋监视巡防、遥测天线、气象

3、传感器、太阳能电池板和一个阿尔戈斯定位信标天线。太阳能电板可以通过摆动从而进入到浮标中心的仪表井。这个井直径24”深45”为电池、太阳能电池板调节器、电力输送系统、数据处理和储存系统、遥测系统和后备阿尔戈斯定位信标提供了足够的空间。可以从其顶部的一个开口进入到浮标的水密电子井。较大直径可以允许一个人侧身进入到井中以对其底部的电池进行作业。为了简易维修而装配电子器件一直以来都是一个问题。在类似但是较小的GLOBEC(GLOBEC)浮标中,电池和电子器件被拧在电子井每一面的栏杆上。俯身在小井中对这些器件进行作业的确很困难。在这个新型的浮标中,电子器件安装在支架上,支架可以由焊接在井内部的四个分开的

4、导管进行滑动。每个导管顶部的硬橡胶“弹簧”和销钉将支架固定住。将电子器件和电池从浮标中拿出进行外部维修仍旧是个难题。新型浮标系统经历了伍兹霍尔海洋研究所的各项测试。泡沫浮圈是基本的浮标外体。塔顶部装有一个尽可能远离彼此的卫星接收天线(左边)和传输天线(左边)。2浮圈Surlyn泡沫浮圈(Gilman公司)为浮标提供浮力支持。GLOBEC浮标由约2000磅有效载荷的储备浮力制成。最初的设计目的是使浮标漂浮在锚上,不会有被拖下去和下沉的风险。有一个防护浮标,它具有由下沉的铁链系泊住的一个较小泡沫圈。当拖动其他设备时我们将其恢复到正常状态。泡沫受到挤压,但是它逐渐伸展到近乎于原来的大小。泡沫浮子在水

5、下因捕鱼活动而被拉伸到非常远时它就无法使用了。目前的泡沫浮子可以使漂浮防止被拉到失去浮力和沉物的点之下。对于较重的有效载荷来说,较大直径的泡沫圈易于代替现有的泡沫圈以提供增加的浮力。为了减少浮标在海浪波场的倾斜运动,泡沫的下部有两舷分割开,这样浮圈底部近乎于一个半球。所以,波浪会给浮标带来较少的倾斜时刻,而且弹力细绳可以为科学观测提供一个更稳定的平台。黄色颜料组成的Surlyn泡沫表示研究浮标但其不助于导航。在黄色浮标部署在乔治海岸的过去四年中,这些黄色浮标仅有轻微的褪色,但是其色彩的保持度比那些着色的钢浮标要好很多。这种泡沫证明很可靠,尽管它显示出有被撞击和冲击的痕迹,但是其大体真正的使用性

6、能并未有受到破坏。其抗撞击的能力比钢浮标要强的多,钢浮标会碎裂然后生锈。泡沫浮圈也更容易处理因为它可以紧贴在船上而且在恢复线连接时不会对浮标或船只造成任何损坏。令人惊讶的是,泡沫也减少了对浮标的维护工作,因为它并不像钢防护浮标一样易于脏污。浮标用高压清洗机易于清洗,而且使用前在水线下用标准的防污染漆易于着色。我们基本不需要做其他任何日常维护。另一方面,钢浮标需要刮擦、涂底漆、以及在每次使用时进行定期上漆着色。3太阳能发电系统浮标数据,遥感系统和传感器均由太阳能发电系统提供动力。四个Solarex 64瓦特太能能电池板通过专业概念公司生产的分路开关调节器来装载两个Concord电池公司生产的安时

7、可充电密封胶体干电池。二极管网络将电池连接到数据系统和传感器以防因放电导致一部分系统的瘫痪。所以,两个单独的电力系统有一块电池和两个太阳能电池板,每个太阳能电池板为浮标系统提供动力。这种冗余在过去并未有证明其是必要的,但是增加了可靠性。早期浮标的太阳能发电系统使用了四种10瓦特装有两个40安时Powersonic 胶体干电池的Solarex电池板。这种配置在缅因湾和马萨诸塞湾相当适用。GLOBEC科学浮标使用四个20瓦特Solarex或西门子电池板以安装三个Powersonic40安时胶体干电池。GLOBEC防护浮标使用两个10瓦特Solarex电池板以安装一个单40安时胶体干电池。实践证明这

8、些系统可靠有效,除了设备故障引起强流流失,并为设备提供令人满意的动力。我们使用10瓦特Solarex电池板15年之久,而且至今它们看来仍崭新如昨仍在有效工作。早期钢浮标太阳能电池板安装在近水45°角度处。设计理念是让波浪可以冲洗掉因鸟儿停留在浮标上对太阳能电池板产生的脏污。对于额外电力的要求可以通过添加安装高于塔的太阳能电池板来实现,而且它们没有观察不到的脏污。所以,GLOBEC太阳能电池板安装在如建议的用于地面应用的纬度正10°之处。在测试中显示水中光的反射使得这个角度未有像之前想象的那么重要。新浮标中的配置使得电池板与塔稍微调整具有一定角度,电池板受到塔端的圆圈和塔底的

9、Surlyn泡沫浮标保护。我们还没有遇到过太阳能电池板破损的现象除了在恢复时它受到船只突出部分的撞击(在使用浮标的10年中有2块电池板损坏)。太阳能电池板阵列传输电力给电池系统,然后电池系统传送电力到浮标系统,这一过程是很难计算的。包围在浮标周围的四个电池板确保至少有一块电池板受到太阳的直射,至少一块在阴暗处。若在上午晴朗无云的天气条件下,太阳与一块电板平齐,这块电池板传送3.5安培电至一块胶体干电池中。电池板制造商在电池板的说明书上标明了最大极限装载电流为3.7安培,所以我们做的不算太过分。与太阳成90°角的两块电池板每块提供1.0安培电流,在阴暗处的电池板提供0.75安培。所以,

10、“256瓦特”太阳能电池板阵列实际上可以给电池供给80瓦特电力。那时候,太阳能电池板传送42安时(约550瓦小时)到电池中。这些数据需要通过太阳角度和白昼时间来进行核算。同时,在较冷天气下,太阳能电池板和电池会表现出较低的效率。调节器对防止胶体干电池的过量充电非常必要。如果充电过量它们会释放氢气,在浮标井中会形成一个易爆炸的环境。我们也安装了一个催化室将氢气和浮标中的所有氧气转化为水,水最终由干燥剂吸收掉。在电池上有一个穿过阻流二极管的电压降,这样仪表上显示的能量仅移动了低于电池电压的1/3伏。温度不足和电池效能低的原因是我们通常设计电力系统的两个安全因素的其中之一,并且系统已提供了必要的电力

11、。新系统有一个另外的问题因为计算机在被不断的提供电力,而且额外的电路为了进行诊断而在一直工作,这样太阳能系统只能在有少量云的长夏季月份中保持不衰退。内部电力控制时钟承受认可过去成功被使用过的PC/104系统,这项功能将在不久的将来也会添加到此系统中。4系泊系泊是浮标和锚之间一个紧拉的彼此顺应的连接。在潜水区域(深度40-100米),这个系泊必须承受大于6米因海浪和潮水产生的浮标起伏漂移震荡,以及由于电流产生的水平位移。这就有了符合弹性系泊成分的可能。四到六分之一英寸直径的NATASYN橡胶弹性成分(由浮标技术公司完成和装配而成)形成了系绳。每个成分需被100%的拉长并且有100磅的张力,从而引

12、起软弹性反应。选择系绳的长度是为了给某些特定使用情况提供足够的伸展拉力。在恶劣的天气和高电流情况下弹性往往超过100%。从GLOBEC弹性系绳子中获得的正面经验被用来开发美国宇航局浮标的弹性系泊。在浅水区部署使用此系统的结构配置图 系绳比链条系泊或缆绳系泊操作的张力水平要低很多。弹性系绳减少了传统系泊的大冲击负载。低张力增加了这些系泊的使用寿命,因为减少了对系泊硬件的磨损,这也反过来在增加使用寿命的同时降低了对硬件重量的要求。部署经历了超过无故障的12个月。浮标底部不断的张力为科学观测的改进减少了浮标移动。此系泊的一个新特点是水面浮标与近海底的传感器组件通电连接。弹簧线软线组件(像坚固的电话听

13、筒线)绕着其中一个弹性部件螺旋上升。(弹簧软线组在伍兹霍尔海洋研究所为SSAR漂流浮标项目开发,此项目为GAMOT项目的一部分为了测量全球海洋变暖而设立存在。弹簧软线组经过了600万个拉伸循环实验室测试,以及橡胶弹力管内部的长线部署,均无失败。)它们由一个中心编织重要零件,被大量绝缘#18AWG 导线盘旋包围的铁心线,和一个厚厚的外部挤压的橡胶绝热罩组成。0.7英寸厚的电缆螺旋盘绕着钢心轴,将最初未处理过的橡胶绝热罩蒸压硫化到螺旋的形状。绝热罩提供了扭转弯曲的刚度和回缩。回缩是弹簧软线在去除外部张力之后收缩到其原来形状的一种能力。弹簧软线螺旋盘绕的包装方向沿着橡筋带多个部分交替进行。我们希望进

14、一步的试验表明弹簧软线可以在没有足够长的外管保护的条件下仍可以使用,以从水面为设备提供动力,并且将数据回送到水面平台以进行存储和遥感。5. 连接器所有电子井的穿透均通过位于浮圈的井之上的三个馈入板来完成。每块板有六个连接器,范围从天线同轴连接器到传感器和电力动力的多插头式水下连接器不等。GLOBEC使用某些传统的橡胶塞填充管将同轴和屏蔽的气象传感器电线带入到电子井中。在6个月的部署中发生了三次小型泄露事件(数滴),在电子井内部留下了盐的痕迹。由于干燥的氮气和干燥剂,只有在一种情况下会产生破坏,那就是由于“冲洗”带切口的电缆而使得少量的盐水进入到数字转换器接口的传感器连接处。所以,要提供任何水都

15、无法进入到井中的坚实阻碍物,只有使用水下连接器。信号和动力连接器为Brantner and Associates生产的2 (用于每个太阳能电池板)到12个插头(用于塔上一个单独电子信号调节模块的气象信号)型连接器。水中传感器的信号沿着系泊强力构件而后传送给浮标。它们受保护避免不被标准的橡胶软管和灭火水龙带所戏弄,那里系着电缆来锁住原件并围绕着传感器装备笼。然后电缆穿过Surlyn泡沫的一个洞并且插入插头到浮标井中的穿板式连接器。我们采用的是全水下甚至全水上的设计理念,因为浮标可能拉到水下或有海浪从上面冲刷过去。因此,连接器能够提供可靠的电通路,它们易于连接和断开,并且不会泄露。6数据系统数据系

16、统由PC/104格式部件和一个100兆赫兹的Intel 80486DX4微处理器组成,运行的是Linux操作系统。Linux, 是一种自由分布,类似于Unix的操作系统,提供了多用户、多程序设计处理保护和发现于现代桌面工作站的网络容量。支持AX.25协议,分组无线应用的必须物被构建固定为Linux系统的一部分。有了多任务操作系统,任务调度,例如打开或关闭传感器就可以轻易实现,并且多种多样的仪器接口可以被单独开发和执行起来。单一传感器的抽样率可以单独设置。该系统还可以通过软件对单一系泊的多个实验服务传感器进行配置,通过使用标准的网络工具将数据指引到适当的目的站。计算机主板(WinSystems公

17、司)包括16兆字节的RAM, I/O接口,和一个16位的PC/104 总线接口。为了建立嵌入式系统,计算机通过一个单5伏电源进行操作,不需要附加键盘或视频监视器。模拟数据采集通过使用PCM-A/D-12(WinSystems),和带有16个单端输入输入信道的12位A/D 转换器来实现完成。串口多路器(BayTech H系列)提供多个连续接口。计算机控制传感器和无线电传送功率由PC 104-PDIS08 (WinSystems)8信道继电器板来实现完成。SATPAK-104PLUS-L板(Zeli Systems)配上一个Trimble SK8 GPS 接收器来实现卫星跟踪。以太网接口板完成系统

18、,当浮标未使用时可以远程访问数据系统。使用此系统的一个顾虑是其耗电量相对较大约1.5培。完全利用Linux系统的性能意味着给予系统尽可能多时间的能量。提供大量的RAM如系统硬盘一样大幅减少进程交换是一种重要的电力消耗。将来考虑会增加一个电力控制闹钟,这样系统可以在软件的控制下在需要保存电力的情况下被及时关闭掉。7命令和遥感系统命令和遥感系统是此项目的主要新型开发部分。此系统利用新型低地球轨道卫星(LEO)来使得通过遥感平台发出的数据在数量级方面增加,并且允许命令被传送到浮标。卫星和水面之间的信息传送使用(数据)包定序法来完成。上行线和下行线频率不同,允许9600有效波特率的全双向操作。链路层协

19、议是AX.25;应用层是PACSAT一整套协议。PASCAT卫星在存储转发模式下操作,很像电子公告板。有合适标头的数据文件可以被上传到卫星中,储存保留很多天,然后往往在同一个卫星经过时由地面站下载下来。同样地,地面站可以上传文件到浮标地址,这里可以识别文件,下载,然后执行其包含的命令。我们自行设计的无线电完全由数据系统计算机进行控制。软件预测了基于GPS定位和时间的卫星可见度,激活了无线电设备,开始上传,然后在卫星经过时为多普勒频移调节无线电接收器。通过卫星来同步进程侦听情报广播,下载文件到浮标地址。总体来说单颗卫星每天有4到5个轨道通过,但是基本上,只有一半是在提升并且在一个可以被有效使用的

20、方向中。每次通过持续4-5分钟。在好的通过时我们的系统为每颗每天大约100千字节生产量的卫星上传大约50千字节的数据。这个数字并没有限制我们的数据采集程序因为所有的数据在被二次抽样或上行平分前已被单独的存档。尽管至今只有一种卫星被使用,但是跟踪软件和无线电设计可以与多个卫星进行通信。我们计划将来这么做来增加数据容量,我们的目标是每天至少1兆字节的数据。8传感器数据系统和传感器接口多样化并且可以接受0到5伏的模拟输入,和RS323以及RS485的串行数据。为了科学研究,本系统将会在如下对整套传感器进行描述。气象观测在水面3米以上进行。风速和方向相对于磁北、风速和强风被分解为矢量平均风组件。浮标的

21、数据系统抽样1赫兹的风,计算矢量平均风速,在平均间隔时间的最小和最大风。测量大气温度和相对湿度为了允许动量和估算热通量。为了协助热通量,我们对长波和短波辐射均做了测量。为了与生物研究相结合,我们也做了引入PAR(光合成有效辐射)测量。为了完成气象组同样也对大气压力也进行了测量。水中观测包括沿着系泊电缆不同深度下对温度和电导率(计算盐度和密度)测量。这些传感器由浮标的数据系统提供动力能量然后将数据回送给浮标来处理、存储和遥感到海岸。声学多普勒海流剖面仪提供了从近水面到大陆架区域底部的海流剖面。底部压力仪器装配在系泊的低处,将围绕柔性弹性系绳的数据发送到浮标。为了将生物和全球气候研究结合在一起,一

22、些生物光学组件通常将会被沿着系泊而隔开。每个都有带有遥感到浮标数据系统的自己的数据系统和4立体弧度(标量)的PAR,叶绿素荧光计,一个投射表或光纤背散射传感器,温度和电导率传感器。为了和海洋水色卫星地面实况研究相结合,组件也承载上升流和沉降流光谱辐射计来收集7个波段的辐射(目前设置到SeaWiFS 波长)。结合的数据允许进行基本的物理和生物研究,而且为全球气候变化研究的部分之一卫星颜色研究的估算绿水辐射提供上升流辐射剖面。9致谢浮标的开发由美国航天局/歌达飞行中心提供支持,合同编号为NAS5-97057。我们要感谢美国航天局/歌达飞行中心的斯坦福胡克博士的支持和付出。此项开发借鉴了U.S GL

23、OBEC由NSF在研究资助OCE-93-13670和OCE-96-32348下的长期系泊程序的经验和传感器。我们还要感谢Sean Kery的初期设计和对浮标提供的帮助,以及Pat OMalley和Jeff Lord他们为组装和测试浮标所做的努力和协助。原文:The Next Generation Ocean Observing Buoy in Support of NASAs1.IntroductionThe Woods Hole Oceanographic Institution (WHOI) and Jackson and Tull (J&T) are developing an

24、improved moored instrumented buoy system in support of NASA's Earth Science Enterprise. This new design utilizes WHOI's oceanographic experiences with buoys, moorings, and sensing systems, and J& T's expertise with aerospace telemetry and computer systems. The buoy system includes ca

25、pability for a full suite of meteorological sensors, water temperature, conductivity (salinity), bio-optical sensors and radiometers at several depths and an acoustic Doppler current profiler (ADCP) for currents. The system is capable of deployment on continental shelf regions worldwide for ocean sc

26、ience studies, including ocean color satellite ground truth validation. It uses the new generation of Low Earth Orbiting (LEO) communication satellites for two way, high throughput command and data telemetry.2. Buoy StructureThese new NASA buoy systems are constructed from steel and aluminum with a

27、foam flotation collar. Steel, used for low cost and simplicity of construction, was hot dip galvanized and painted for protection against corrosion. Some old steel guard buoys (submarine net floats with towers added) are still in use after 20 years, so life should not be a problem. Also, making the

28、base from heavy steel bar stock eliminated the need to add zinc or lead weights for ballast as in aluminum buoys. The buoys tower is made of 6061-T6 aluminum for light weight, and electrically isolated from the steel base by plastic shoulder washers. Mounted on the tower are a radar reflector, Coast

29、 Guard approved flashing light, telemetry antennas, meteorology sensors, solar panels, and an ARGOS locator beacon antenna. One solar panel can be swung up to gain access to the instrumentation well in the center of the buoy. The well is 24” in diameter and about 45” deep to provide space for the ba

30、tteries, solar panel regulators, power distribution system, the data processing and storage system, telemetry system, and backup ARGOS buoy locator. Access to the buoys watertight electronics well is through a hatch in the top. The large diameter allows a person to lean into the well to work on batt

31、eries in the bottom Mounting the electronics for easy servicing has always been a problem. In similar but smaller GLOBEC (GLOBal ocean ECosystems dynamics) buoys, the batteries and electronics are screwed to bars on the side of the electronics well. Bending over the smaller well and working on the c

32、omponents was difficult. In this new buoy, the electronics are mounted on racks that slide down four split guide tubes welded to the inside of the well. A hard rubber “spring” and pin at the top of each tube hold the racks in place. Lifting the electronics and batteries out of the buoy for servicing

33、 is still difficult.The new buoy system undergoing tests off the WHOI dock. The foam flotation collar is the basic buoy hull. On top of the tower the satellite receiving antenna (on right) and transmitting antenna (on left) are mounted as far apart as possible.3. Flotation CollarA Surlyn foam flotat

34、ion collar (Gilman Corporation) provides the buoyancy for the buoy. In GLOBEC (our first experience with this technology) the buoys were made with about 2000 pounds of reserve buoyancy with full payload. The initial design goal was to enable the buoys to float the anchor and not be dragged down and

35、risk sinking. We had one guard buoy with a smaller foam collar moored by chain that did sink. We recovered it when dragging for other equipment. The foam was compressed, but has slowly expanded to nearly original size since recovery. The foam flotation could not survive being pulled very far under w

36、ater by fishing activity. The present foam flotation will prevent the buoy from being pulled under to the point that it looses buoyancy and sinks. For heavier payloads, a larger diameter foam collar can easily replace the existing one to provide increased buoyancy.To minimize the tilting motion of t

37、he buoy in the wave field, the lower portion of the foam is cut with two chines so the bottom of the floatation collar approximates a hemisphere. Therefore, the waves can apply little tilting moment to the buoy, and with the elastic tether provide a more stable platform for scientific observations.T

38、he Surlyn foam is formed with a yellow pigment indicating a research buoy and not an aid to navigation. During the last four years the yellow color of buoys deployed on Georges Bank has faded only slightly, and held up better than painted steel buoys. The foam has proven reliable and although it sho

39、ws some signs of being hit, gouged and rough usage is not really damaged. It survives being hit better than a steel buoy that will chip and then rust. The foam buoy is also easier to handle as it can be “snugged” up to the ship on recovery without damage to the buoy or ship while recovery lines are

40、attached. Surprisingly, the foam has also reduced buoy maintenance efforts because it does not bio-foul as readily as steel guard buoys. The buoys are easily cleaned by a pressure washer and then repainted below the water line with standard antifouling paint before deployment. We routinely have done

41、 no other maintenance. On the other hand, the steel buoys require scraping, priming, and regular painting each time they are deployed.4. Conversion of pseudo-rigid-body model to compliant mechanismThe buoy data and telemetry systems and sensors are powered by solar power. Four Solarex 64 Watt solar

42、panels charge two Concord Battery Corporation 105 ampere hour deep-cycle sealed gel cell batteries through Specialty Concepts Inc. shunt switching regulators. The batteries are connected to the data system and sensors through a diode network to prevent a failure in one part of the system from discha

43、rging the other. Thus, there are two independent power systems with one battery and two solar panels each which supply power to the buoy system. This redundancy has not proven necessary in the past, but adds a level of reliability.Solar systems on earlier buoys used four 10 Watt Solarex panels which

44、 charged two 40 ampere hour Powersonic gell cell batteries. This configuration worked well in the Gulf of Maine and Massachusetts Bay. GLOBEC science buoys use four 20 Watt Solarex or Siemen panels to charge three Powersonic 40 ampere hour gel cell batteries. GLOBEC guard buoys use two 10 Watt Solar

45、ex panels to charge a single 40 ampere hour gel cell battery. These systems have proven reliable, and unless an equipment failure has caused high current drain, have satisfactorily powered the experiments. We are still using some 10 Watt Solarex panels 15 years after they were put in service, and th

46、ey appear to be working just as well as when new.The solar panels on early steel buoys were mounted at about a 45° angle near the water. The idea was to have the waves wash over the solar panels and clean any fouling due to birds perching on the buoys. Requirements for additional power were met

47、 by adding solar panels higher on the tower, and they did not have observable fouling. Therefore, the GLOBEC solar panels were mounted as suggested for terrestrial applications of latitude plus 10°. In tests it appears that the reflection of light from the water makes this angle not as importan

48、t as initially thought. The configuration in the new buoys has the panels angled out slightly from the tower with the panels being protected by the ring at the top of the tower and the Surlyn foam flotation collar at the bottom. We have not suffered a solar panel loss other than when it has been hit

49、 by a protruding part of the ship during recovery (two panels broken in 10 buoy deployment years).、The power delivered by the solar panel array to the battery system and then to the buoy system is harder to calculate. The four panels around the buoy assure that at least one will be in direct sun and

50、 that at least one will be in the shade. In a test of the system in clear sky conditions in late morning with the sun aligned with one solar panel, that panel delivered 3.5 amps into a gel cell battery. The manufacturers specifications for these panels states that the maximum load current out is 3.7

51、 amps, so we are not doing too badly. The two panels 90° from the sun supplied 1.0 amps each, and the one in the shade supplied 0.75 amps. Therefore, the “256 Watt” solar panel array was actually supplying about 80 Watts into the battery. That day, the solar panels delivered 42 ampere-hours (ab

52、out 550 Watt hours) to the batteries. These numbers need to be scaled by the sun angle and daylight time. Also, in colder weather solar panels and batteries perform less efficiently.A regulator is necessary to prevent overcharging of the gel cell batteries. If overcharged they release hydrogen gas,

53、which can form an explosive environment in the buoy well. We also mount a catalytic cell to convert the hydrogen and any oxygen in the buoy into water that is absorbed by desiccants. There is a voltage drop across the blocking diodes on the batteries, so the power at the instrumentation runs about 1

54、/3 volt below the battery voltage. We generally design power systems with a safety factor of two to account for temperature and battery inefficiencies, and the systems have supplied the necessary power.The new system had an additional problem because the computer was continuously powered and additio

55、nal circuits were on for diagnostic purposes, so that the solar system could only keep up during long summer months with little cloud cover. An internal power controlling clock which powers down the computer has allowed PC/104 systems to be successfully used in the past, and will be added to this sy

56、stem in the future.5. Mooring The mooring is a taut, compliant link between the buoy and anchor. In shallow water depths (40 to 100 m), this mooring must accommodate the greater than 6 m heave excursions of the buoy due to waves and tides, and the horizontal displacement due to currents. This is pos

57、sible with compliant elastic mooring elements. Four to six oneinch diameter NATSYN rubber elastomeric elements (terminated and assembled by Buoy Technology, Inc.) form the tether. Each element is stretched about 100% with 100 lbs tension, resulting in a very soft spring response. The tether length i

58、s selected to provide sufficient stretch for the particular deployment conditions. Stretch often exceeds 100% in severe weather and high current events. The positive experience gained with the elastic tethers in GLOBEC was used to develop the elastic mooring for the NASA buoy.A tether operates at si

59、gnificantly lower tensions levels than the all chain or cable mooring. The elastic tether eliminates the large shock loads of conventional moorings. The low tensions increase the life of these moorings due to reduced wear in the mooring hardware, which in return can reduce the weight of hardware required while increasing service life. Deployments have exceeded 12 months without failure. The constant tension on the bottom of the buoy reduces buoy motion for improved scientific o

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论