




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、勾勾 股股 定定 理理授课人:李明利授课人:李明利 衡阳市成章实验中学祁东校区衡阳市成章实验中学祁东校区 读一读读一读 我国古代把直角三角形中较短的直角边称为勾,我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦较长的直角边称为股,斜边称为弦.图图1-1称为称为“弦图弦图”,最早是由三国时期的数学家赵爽在为,最早是由三国时期的数学家赵爽在为周髀算经周髀算经作法时给出的作法时给出的.图图1-2是在北京召开的是在北京召开的2002年国际数年国际数学家大会(学家大会(ICM2002)的会标,其图案正是)的会标,其图案正是“弦图弦图”,它标志着中国古代的数学成就,它标志着中国古代
2、的数学成就. 图1-1图1-2B BA AC C图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积4 44 48 8S SA A+S+SB B=S=SC CC C图甲图甲1.1.观察图甲,小方格观察图甲,小方格的边长为的边长为1.1.正方形正方形A A、B B、C C的的面积各为多少?面积各为多少?正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?A AB BC C图乙图乙2.2.观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.正方形正方形A A、B B、C C的的面积各为多少?面积各为多少?9 916162525S SA A+S+SB B=
3、S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积C CA AB B图乙图乙2.2.观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.9 916162525S SA A+S+SB B=S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面
4、积C C的面积的面积a ab bc ca ab bc cC CA AB BC CC C图乙图乙S SA A+S+SB B=S=SC CS SA A+S+SB B=S=SC C图甲图甲a ab bc ca ab bc c3.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2 +b2 =c23.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2 +b2 =c23.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2 +b2 =c2a aa aa aa ab bb bb bb bc cc cc cc c用拼图法证明用拼图法证明3.3.猜想猜想a a、b b、c
5、 c 之间的关系?之间的关系?a2 +b2 =c2a aa aa aa ab bb bb bb bc cc cc cc c用拼图法证明用拼图法证明3.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2 +b2 =c2a aa aa aa ab bb bb bb bc cc cc cc c用拼图法证明用拼图法证明3.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2 +b2 =c2SS大正方形大正方形=(a+b)=(a+b)2 2= =a a2 2+b+b2 2+2ab+2ab S S大正方形大正方形=4=4S S直角三角形直角三角形+ + S S小正方形小正方形 =
6、4 ab+c=4 ab+c2 2 = =c c2 2+2ab+2aba a2 2+b+b2 2+2ab+2ab= =c c2 2+2ab+2aba2 +b2 =c212a a2 2+b+b2 2+2ab+2abc c2 2+2ab+2ab勾股定理(毕达哥拉斯定理)(gougu theorem) 如果直角三角形两直角如果直角三角形两直角边分别为边分别为a, b,斜边为,斜边为c,那么那么 即直角三角形两直角边的平方和等于即直角三角形两直角边的平方和等于 斜边的平方斜边的平方.222cbaac勾勾弦弦b股股证法二:证法二:(伽菲尔德证法(伽菲尔德证法1876年)年)ABCDE如图,如图,RtRtA
7、BERtABERtECDECD,可知可知AED=90AED=90;)(21baba梯形梯形ABCDABCD的面积的面积2212121cabab梯形梯形ABCDABCD的面积的面积2212121)(21cababbaba222cbaa abbcc 例例1 1 . .在在RtRtABCABC中,中,=90=90. . (1) (1) 已知:已知:a=6a=6,=8=8,求,求c c; (2) (2) 已知:已知:a=40a=40,c=41c=41,求,求b b; (3) (3) 已知:已知:c=13c=13,b=5b=5,求,求a a; (4) (4) 已知已知: a:b: a:b=3:4, c=
8、15,=3:4, c=15,求求a a、b.b.例题分析例题分析方法方法小结小结 (1)在直角三角形中在直角三角形中,已知两边已知两边,可求第三边或知某一边可求第三边或知某一边求另两边的数量关系求另两边的数量关系 (2)可用勾股定理建立方程,解决一些实际问题可用勾股定理建立方程,解决一些实际问题.(3)利用勾股定理证明带有平方关系的问题)利用勾股定理证明带有平方关系的问题、如图、如图:一个高一个高3 米米,宽宽4 米的大门米的大门,需在相对角需在相对角的顶点间加一个加固木板的顶点间加一个加固木板,则木板的长为则木板的长为 ( )A.3 米米 B.4 米米 C.5米米 D.6米米C试一试试一试:
9、、隔湖有两点、隔湖有两点A、,从与、,从与A方向成直方向成直角角 的的BC方向上的点方向上的点C测得测得CA=13米米,CB=12米米,则则AB为为 ( )ABCA.5米米 B.12米米 C.10米米 D.13米米1312?A试一试试一试:、一个直角三角形的三边长为三个连续、一个直角三角形的三边长为三个连续偶数偶数,则它的三边长分别为则它的三边长分别为 ( )A 2、4、6 4、6、8B试一试试一试: 6、8、10 8、10、125 或或 7、已知:、已知:RtBC中,中,AB,AC,则则BC的长为的长为 .试一试试一试:4 43 3ACB4 43 3CAB注:在应用勾股定理时,要结合图形具体处理,不能机械的认为c所对的角是直角或c边必是斜边5、求下列图中字母所表示的正方形的面积、求下列图中字母所表示的正方形的面积=625225400A22581B=144 例例已知已知:如图如图,等边等边ABC的边长是的边长是 6 . (1)求高求高AD的长的长; (2)求求SABC .ABCD例题分析例题分析36? 已知已知:如图如图,等边等边ABC的高的高AD是是 . (1)求边长求边长; (2)求求SABC .ABCD练一练练一练332xx如图如图, ,折叠长方形折叠长方形(四个角都是直角,(四个角都是直角,对边相等)对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清洗酒店台布协议书
- 姐弟抚养后续协议书
- 项目合作筹备协议书
- 简单参股协议书范本
- 学生碰撞调解协议书
- 企业外出旅游协议书
- 转岗降薪协议书范本
- 人脸签约服务协议书
- 简约私人纠纷协议书
- 劳务服务推广协议书
- GB/T 23445-2009聚合物水泥防水涂料
- 中医基础理论(中英文对照)
- 生理学(全套课件)
- 香港公司条例
- 污水处理系统工程合同范本
- 德能勤绩廉个人总结的
- 二年级美术上册课件 《3.我的手印画》 赣美版 (共18张PPT)
- Q∕SY 126-2014 油田水处理用缓蚀阻垢剂技术规范
- GB∕T 3216-2016 回转动力泵 水力性能验收试验 1级、2级和3级
- 电子电气评估规范-最新
- 黑布林绘本 Dad-for-Sale 出售爸爸课件
评论
0/150
提交评论