




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章第四章 总体均数的估计和总体均数的估计和t检验检验 医学统计学及其软件包上海第二医科大学生物统计教研室第一节 总体均数的估计 一标准误一标准误(Standard Error) 标准差是描述个体值的变异。 标准误用于描述统计量的变异。 均数的标准误,就是样本均数的标准差,用以表达样本均数分布的离散程度。标准误小,表示抽样误差小,统计量较稳定,与所估计的参数较接近。 nSSx/ 样本1 N 样本2 N 样本3 N 。1X2X3X 正态总体N(,2) 各样本均数构成一个总体,为正态分布N( ,2/N)。样本均数的标准差为: /用一个样本来估计样本均数的标准差为:NnSSx/ 通常用均数标准差:
2、表示一组数据的平均水平和离散程度。 有时用均数标准误:表达样本均数及其离散程度,必须注明以免误解。 除了均数的标准误外,还有率的标准误,回归系数的标准误等。二总体均数的估计二总体均数的估计 总体均数用表示,总体均数的估计包括点估计和区间估计。点估计即用样本均数来估计总体均数。区间估计即按一定的概率估计总体均数在哪个范围内,这个范围称为置信区间,这个概率称为可信度或置信度,用1-表示,常取95%或99%,按此确定的可信区间分别称之为95%或99%可信区间。 总体服从正态分布并且总体标准差未知,则总体均数的95%可信区间为: nstx/,05. 0例例4.1 求例3.2资料(P38)中红细胞数总体
3、均数的点估计和区间估计。从例3.2的计算中可得:n=120, =4.9591,s=0.4038,自由度=n-1=120-1=119,查t界值表得 , ;(P394)。总体均数的点估计为:4.9591总体均数的95%可信区间为: = (4.8861, 5.0321)总体均数的99%可信区间为: =(4.8626,5.0556) x980. 1120,05. 0t617. 2120,01. 0txnstx/,05. 0nstx/,05. 0120120 x980. 1120,05. 0t617. 2120,01. 0t120/4038. 0980. 19591. 4120/4038. 0617.
4、29591. 4三总体均数区间估计的SAS程序proc means data=rbc n mean std clm; var x;run;Proc means data=rbc n mean std clm alpha=0.01; var x;run;选择项clm表示要计算总体均数的可信区间 可信区间的可信水平可用选择项alpha=规定 程序程序4.1结果输出:结果输出: Analysis Variable : X N Mean Std Dev Lower 95.0% CLM Upper 95.0% CLM - 120 4.9590917 0.4038348 4.8860955 5.03208
5、79 - Analysis Variable : X N Mean Std Dev Lower 99.0% CLM Upper 99.0% CLM - 120 4.9590917 0.4038348 4.8625876 5.0555957 - 第二节第二节 样本均数与总体均数比较的样本均数与总体均数比较的t检验检验 设样本观察值为X1,X2, Xn ,欲检验该样本是否来自均数为0的已知总体。 t检验步骤为: (1)建立假设: H0:样本来自均数为0的总体 H1:样本所来自的总体均数不为0 双侧= 0.05 (2)计算统计量,求P值 xSxt/0自由度=n-1 nSSx/求得t值后,据查t临界值
6、表得t0.05,t0.01。 如果,tt0.05,则P0.05,不拒绝H0。样本均数和0的差异无统计学意义。 t0.05tt0.01,则0.01P0.05,在=0.05水平上拒绝H0,样本均数和0的差异有统计学意义。认为该样本并非来自均数为0的总体。 t0.01t,则P0.01,在=0.01水平上拒绝H0, 例例4.2 随机抽取某地区96个成年男子的脉搏平均数是每分钟73.7次,标准差为8.8次,试问该地区成年男子的脉搏平均数和每分钟72次有无差别?解:解:H0: =72 H1:72 t=|73.7-72|/(8.8/ )=1.893 =96-1=95 查t界值表(见附表二), =95时,t0
7、.05=1.982,现t=1.893t0.05,故P0.05。认为某地区成年男子的平均脉搏数与每分钟72次差别无统计学意义。96第三节第三节 配对配对t检验检验 配对t检验(Paried t Test)用于配对试验设计(Paired Design),它是按一些非实验因素条件将受试对象配成对子,给予每对中的个体以不同的处理。配对的条件一般为年龄、性别、体重、。其优点是在同一对的试验对象间取得均衡,从而提高试验的效率。 欲比较配对试验中两种处理的效果, 或者自身对照中比较试验前后某指标的变化。可先求出成对数据之差值d。然后使用t检验,检验d是否来自均数为0 的总体。 配对比较设计配对t检验公式为:
8、dSdt/例例4.3 用某药治疗10例高血压病人,治疗前后各例舒张压测量结果如表4.1,问该药是否有降低舒张压的作用?表4.1 10例高血压患者用某药治疗前后的舒张压(mmHg) 例号 治疗前 治疗后 差数d 1 117 123 -6 2 127 108 19 3 141 120 21 4 107 107 0 5 110 100 10 6 114 98 16 7 115 102 13 8 138 152 -14 9 127 104 23 10 122 107 15 解解:H0:差数总体均数d=0 H1:差数总体均数d0。 由表4.1算得各例治疗前后的差值d后,得 =9.7 , =12.3473
9、/ 代入(4.13)式, t=9.7/(12.3473/ )=2.4843 , df=10-1=9 查t界值表,df=9时, t0.05=2.262, t0.01=3.25 现t0.05tt0.01 ,故0.01P0.05,所以,拒绝H0, 认为治疗前后舒张压之相差有统计学意义,可以认为该药有降低舒张压作用。 ddS10d10第四节第四节 团体团体t检验检验 当按完全随机化设计的两个样本均数比较时,可用团体t检验(Grouped t Test), 比较的目的是它们各自所代表的总体是否具有相同的均数,其假设检验为H0:1=2, H1:12 完全随机化设计两个样本均数比较方差齐方差不齐方差齐性检验
10、t检验样本大小合并方差估计法 各自方差估计法 21|21xxSxxt分母称为两样本之差的标准误1. 小样本时,用合并方差估计法:)11(2)()(212122221121nnnnxxxxSxx自由度: DF=n1+n2-22. 大样本时,用各自方差估计法:22212121nSnSSxx自由度可用公式计算第五节第五节 两组的方差齐性检验两组的方差齐性检验 两个均数比较的t检验,其前提是两个样本所代表的总体具有相同的方差, 因此在作t检验前,应该作两个方差是否齐性(一致)的检验,称为方差的齐性检验(Test for Homogeneity of Variance)。H0:12=22 H1:1222 统计量F计算:F=较大的方差/较小的方差 这是一个单側检验,查单側方差分析用表。 自由度值有2个,分别为分子的自由度与分母的自由度。由方差齐性检验专用的F界值表(附表四,P396), 据分子,分母的自由度查得F0.05 , F0.01值, 如果FF0.05, 则P0.05, 不拒绝H0 ; 如果F0.05FF0.01,则0.01P0.05, 在=0.05水平上, 拒绝H0 ; 如果F0.01F,则P0.01, 在=0.01水平上,拒绝H0。 t检验的条件1. 样本均数和总体均数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能照明在医疗手术室照明中的应用考核试卷
- 矿物干燥剂生产考核试卷
- 森林植被恢复与重建考核试卷
- 糖尿病患者护理查房 2
- 一年级上册数学口算(每天5分钟60题)
- 2025年中考初三学业质量检测(一)物理模拟题答案
- 统编版语文五年级下册第9课《古诗三首》精美课件
- 三亚中瑞酒店管理职业学院《商贸英语听说上》2023-2024学年第二学期期末试卷
- 辽宁省朝阳市双塔区2024-2025学年五下数学期末复习检测模拟试题含答案
- 山东省济南市济阳县2025届初三毕业班模拟考试(五)英语试题含答案
- 2023中考道德与法治十大热点预测-2023年中考道德与法治考场速查宝典(部编版)
- 高中英语必背3500单词表(完整版)
- 农药代销协议书模板
- 2024年新人教版五年级数学下册《教材练习20练习二十附答案》教学课件
- 《电力中长期交易合同示范文本(2022年修订版)》
- 医院感染管理考试题及答案
- 小学班会 世界知识产权日知识产权宣传周主题班会 课件
- 3.2平均数的计算(1)(教学课件)五年级数学上册 沪教版
- 中医科胸痹(冠心病-心绞痛)中医诊疗方案
- 2023-2024全国初中物理竞赛试题:光的反射及折射(含答案)
- 福建省高速公路集团有限公司招聘笔试真题2023
评论
0/150
提交评论