版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、回顾与复习我们已经学过了几种我们已经学过了几种解一元二次方程解一元二次方程的方法的方法?(1)直接开平方法直接开平方法:(2)配方法配方法:x2=a (a0)(x+h)2=k (k0)(3)公式法公式法:. 04.2422acbaacbbx分解因式分解因式的方法有那些的方法有那些?(1)提取公因式法)提取公因式法:(2)公式法)公式法:(3)十字相乘法)十字相乘法:我思我思 我进步我进步am+bm+cm=m(a+b+c).a2-b2=(a+b)(a-b), a2+2ab+b2=(a+b)2.x2+(a+b)x+ab=11ba(x+a)(x+b). 思思 考考 根据物理学规律,如果把一个物体从地
2、面以10m/s秒的速度竖直上抛,那么经过X秒物体离地高度(单位:米)为10X-4.9X 你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01S)210X-4.9X10X-4.9X2 2=0=0 方程的右边为0,左边可因式分解,得104.90.xx于是得0104.90,xx或上述解中,x22.04表示物体约在2.04时落回地面,面x1=0表示物体被上抛时离地面的时刻,即在0s时物体被抛出,此刻物体的高度是0m121000,2.04.49xx 如果ab=0那么a=0或b=0可以发现,上述解法中,由到的过程,不是用开方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一
3、次式分别等于0,从而实现降次,这种解法叫做因式分解法以上解方程 的方法是如何使二次方程降为一次的?09.410 xx09.410 xx0104.90,xx或分解因式法分解因式法w 当一元二次方程的一边是当一元二次方程的一边是0,0,而另一边易于分解成两而另一边易于分解成两个一次因式的乘积时个一次因式的乘积时, ,我们就可以用分解因式的方法我们就可以用分解因式的方法求解求解. .这种用分解因式解一元二次方程的方法称为这种用分解因式解一元二次方程的方法称为分分解因式法解因式法. .w1.1.用分解因式法解一元二次方程的用分解因式法解一元二次方程的条件条件是是: : w 方程方程左边左边易于分解易于
4、分解, ,而而右边右边等于零等于零; ;w2.2.理论依据理论依据是是. .“如果如果两个两个因式的因式的积积等于等于零零, , 那么那么至少至少有有一个一个因式等于因式等于零零”x24=0解:原方程可变形为解:原方程可变形为(x+2)(x2)=0X+2=0 或或 x2=0 x1=-2 ,x2=2X24= (x+2)(x2)AB=0A=0或或重点 难点重点:用因式分解法解一元二次方程难点:正确理解ABAB=0=0= =A A=0=0或或B B=0=0( A A、B B表示两个因式)例例3 解下列方程解下列方程:(1)x(x-2)+x-2=0; (1)x(x-2)+x-2=0; , 014,:2
5、x得:合并同类项移项解. 012, 012xx或w分解因式法解一元二次方程的步骤是分解因式法解一元二次方程的步骤是:2. 将方程将方程左边左边因式分解因式分解;3. 根据根据“至少有一个因式为零至少有一个因式为零”,转化为两个一元一次方程转化为两个一元一次方程.4. 分别解分别解两个两个一元一次方程,它们的根就是原方程的根一元一次方程,它们的根就是原方程的根.1.化方程为化方程为一般形式一般形式;. 012) 12 (xx.21;2121xx 例题欣赏例题欣赏, 02) 2(xxx解:. 01, 02xx或. 012xx. 1, 221xx,4324125) 2(22xxxx 例例1、解下列方
6、程、解下列方程 )2(5)2(3) 1 (xxx05) 13)(3(2x)2(5)2(3) 1 (xxx)2(5)2(3xxx解:移项,得)53(x350) 2( x0 x+2=0或或3x5=0 x1=-2 , x2= 提公因式法2、(3x+1)25=0 解:原方程可变形为 (3x+1+5)(3x+15)=0 3x+1+5=0或3x+15=0 x1=35 , x2= 35公式法用因式分解法解一元二次方程的步骤用因式分解法解一元二次方程的步骤1o方程右边化为方程右边化为 。2o将方程左边分解成两个将方程左边分解成两个 的的乘积。乘积。3o至少至少 因式为零,得到两个因式为零,得到两个一元一次方程
7、。一元一次方程。4o两个两个 就是原方就是原方程的解。程的解。 零一次因式有一个一元一次方程的解快速回答:下列各方程的根分快速回答:下列各方程的根分别是多少?别是多少?0)2() 1 (xx0) 3)(2)(2(yy2, 021xx3, 221yy0) 12)(23)(3(xx21,3221xxxx 2)4(1, 021xx下面的解法正确吗?如果不正确,下面的解法正确吗?如果不正确,错误在哪?错误在哪?. 48. 462; 83563)2)(5(18)2)(5(21xxxxxxxxxx或原方程的解为,得由,得由原方程化为解:解方程( )练习:书P40练习. 100100) 1(, 0) 1 (
8、212xxxxxxxx,即或所以有,提公因式:1.解下列方程:. 32003200)32(, 032)2(212xxxxxxxx,即,或所以有,提公因式1.解下列方程:.10)1(0)1(30)12(30363, 363)3(2122222xxxxxxxxxx所以,有,所以,提公因式得:,移项,得:.211,21101120112011211201214 ) 4 (212xxxxxxx或.211211211412111214:2122xxxxx,即,所以有,:系数化为,移项:另一解法.32210230120)23)(12(0) 12(2) 12(324) 12(3)5(21xxxxxxxxxx
9、xx,所以,或所以有:,提取公因式:,移项: . 3103010) 3)(1 ( 30) 93)(1 (02542540254254) 6(212222xxxxxxxxxxxxxxxx,即或.25(4)25()4(:)6(2122xxxxxxxxxxxx,即或或另一解法2)5(,.22rrr得根据题意设小圆半径为 2.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.)(0255255255255)5(5025102525225102)5(21222222舍rrrrrrrrrrrr.m255所以小圆的半径为十字相乘法因式分解一丶教学目标
10、:分解因式abb)x(ax把形如,使学生会用十字相乘法 1.2二丶复习提问; 1:计算:(1). (x+2)(x+3); (2). (x+2)(x-3);323x2xx原式:解263)x(2x2652xx-3)(22x3x-x原式:解262)x(-3x262xx十字相乘法因式分解二丶复习提问; 1:计算:(3). (x-2)(x-3); (4)(x+a)(x+b);baaxbxx原式:解262)x(-3x2abb)x(ax2652xxabxbax)(2(-3)(-2)2x-3x-x原式:解2三丶试一试:abb)x(axb)a)(x(x2反过来:abb)x(ax2(x+a)(x+b).解因式就可
11、以用上面的公式分) (,时pba并且,的积ba,数能分解 为分解为两个因q如果常数q,pxx对于二次三项式,也就是 说 2a与b和是一次项的系数分解因式;183xx把:例12xx6-3(1).因式分解竖直写;(2).交叉相乘验中项; 6x-3x=3x(3).横向写出两因式;(x+6)和(x-3)解:原式=(x+6)(x-3)例2把;分解因式152xx2;分解因式107aa把3例2xx3-5原式:解(x+3)(x-5)aa52解:原式= (a+5) (a+2)-5x+3x=-2x5a+2a=7a练习一选择题:2b);-b)(a-(a D. 2b);b)(a-(a C.2b);-b)(a(a B.
12、 ;2baba A.) ( 的2b3aba分解 (4).6;5x xD. 6;5X xC.6;5x xB. 6;5x xA.) (是M则3),-2)(x-(x分解的因式是M多项项 若 3.;2a4-a D. ;2a4a C.;2a4a B. ; 2a4a A.) ( 的82xx分解 2.;2a6a D. ;2a6a C. ;4a3a B. 4);3)(a-(a A.) ( 的12aa分解 1.22222222结果为结果为结果为BACD练习二丶把下列各式分解因式: ;365p 4. ;187m . 3;127y 2. ; 34 x. 12222pmyx 030116 ; 02350824 ; 0
13、203; 0652 ; 0861222222xxxyxxxxxxxx解方程0421xx解:04 x02x4, 221xx 030116 ; 02350824 ; 0203; 0652 ; 0861222222xxxyxxxxxxxx解方程 0322xx03- x,02 x3,221xx解 030116 ; 02350824 ; 0203; 0652 ; 0861222222xxxyxxxxxxxx解方程2,402,0402444,504,0504532121xxxxxxxxxxxx解 030116 ; 02350824 ; 0203; 0652 ; 0861222222xxxyxxxxxxxx
14、解方程 2, 102, 01021521xxxxxx解 030116 ; 02350824 ; 0203; 0652 ; 0861222222xxxyxxxxxxxx解方程解 6, 506,05065621xxxxxx十字相乘法分解因式十字相乘法分解因式:21aa21cc211221221)(ccxcacaxaa)(2211cxacxa0273)4(2 xx例例2 解下列方程解下列方程0232) 1 (2 yy08103)2(2xx045314)3(2xx024223)4(2xx 配方法和公式法是解一元二次方程重要方法,要作为一种基本技能来掌握.而某些方程可以用分解因式法简便快捷地求解.w我们
15、已经学过一些特殊的二次三项式的分解因式,如:二次三项式 ax2+bx+c的因式分解;)3(9622xxx?有没有规律看出了点什么. ?91242xx; 6, 1067:212xxxx得解方程开启 智慧);3)(2(652xxxxw但对于一般的二次三项式ax2+bx+c(ao),怎么把它分解因式呢?.?4732xx观察下列各式,也许你能发现些什么);6)(1(672xxxx而; 1, 3032:212xxxx得解方程);1)(3(322xxxx而;23,2309124:212xxxx得解方程);23)(23(491242xxxx而; 1,340473:212xxxx得解方程);1)(34(34732xxxx而w一般地,要在实数范围 内分解二次三项式ax2+bx+c(ao),只要用公式法求出相应的一元二次方程ax2+bx+c=0(ao),的两个根x1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 18912-2024光伏组件盐雾腐蚀试验
- 2025版第七章:电子信息产品采购合同管理规范3篇
- 赛车场屋顶防水工程
- 2025版虚拟现实技术研究与应用开发合同3篇
- 2024年铜材行业节能减排技术与产品供应合同3篇
- 眼镜行业销售人才聘用合同
- 体育赛事组织项目管理准则
- 2025版昆都仑召消防设施远程监控与报警系统合同3篇
- 健身房设备维护操作规程
- 美容美发合作社股东权益书
- 《正态分布理论及其应用研究》4200字(论文)
- GB/T 45086.1-2024车载定位系统技术要求及试验方法第1部分:卫星定位
- 支气管动脉造影护理
- 1古诗文理解性默写(教师卷)
- 广东省广州市越秀区2021-2022学年九年级上学期期末道德与法治试题(含答案)
- 校园春季安全
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 【MOOC】工程力学-浙江大学 中国大学慕课MOOC答案
- 在线教育平台合作合同助力教育公平
- 工地钢板短期出租合同模板
- 女排精神课件教学课件
评论
0/150
提交评论